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We present an automated and physically rooted method to identify and temporally
track hairpin packets and their wall signatures in direct numerical simulation data
of turbulent boundary layers. Statistical tools and pattern-recognition algorithms are
combined to identify the coherent structures and their signature on the wall, and object
segmentation and feature-tracking algorithms are assessed and enhanced to achieve
automatic monitoring of the temporal evolution of individual packets and their wall
signatures. The visualization algorithms are validated against the statistical analysis.
We demonstrate that the average geometric packet is representative of strong statistical
ones. Satisfactory results are presented for the canonical case of an isolated hairpin
packet convecting in channel flow, and for fully turbulent boundary layers. The method
is also suitable for use in combination with experimental particle image velocimetry
(PIV) data.
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1. Introduction

Although turbulence is chaotic in nature and may hence appear to lack an organized
structure, turbulent flows have been found to exhibit certain coherent structures. Regarding
wall-bounded turbulence, in a 1991 review article, Robinson [1] provided an overview
of evidence of the existence of coherent structures, and more recently Ringuette, Wu and
Martı́n [2], Ganapathisubramani, Longmire and Marusic [3], Adrian, Meinhart and Tomkins
[4] and others have found evidence of coherent structures in direct numerical simulation
(DNS) and experimental data. These structures have been the subject of much research
over the past decades, and several models of wall turbulence have been proposed. In recent
years, a growing consensus has emerged for a model based on Theodorsen’s hairpin vortex
model.

In 1952, Theodorsen [5] was the first to postulate the existence of a horseshoe or
hairpin vortex, a simple flow structure whose presence explains both the formation of low-
speed streamwise streaks and the ejection of near-wall low-momentum fluid into higher
momentum regions farther from the wall [4].

In 1981, Head and Bandyopadhyay [6] visualized the stacking of individual hairpins
into larger structures in turbulent boundary layers over a large range of Reynolds numbers
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2 C.O’Farrell and M.P. Martı́n

(500 < Reθ < 17,500). They concluded that the boundary layer consists of hairpin or
horseshoe vortices that are inclined with a 45◦ downstream angle to the wall. Furthermore,
they observed that hairpin vortices stacked into packets whose heads describe an envelope
inclined at a 15◦–20◦ downstream angle. In addition, Head and Bandyopadhyay observed a
variation in hairpin geometry with increasing Reθ . At high Reynolds numbers (Reθ > 2000)
they found hairpins with elongated vortex legs. In contrast, at low Reynolds numbers (Reθ

< 800), they found hairpin vortices that were not elongated and were better described as
horseshoes or vortex loops.

In 2000, Adrian, Meinhart and Tomkins [4] performed particle image velocimetry (PIV)
in boundary layers and identified packets of hairpins that appeared regularly throughout the
flow. From their results, Adrian et al. [4] postulated that hairpin packets consist of groups
of hairpin structures moving at the same velocity relative to the mean flow. In the hairpin
packet model of Adrian et al. [4] , the hairpins in a packet are seen to align in the streamwise
direction in a ramp-like formation at an angle γ to the wall. Packets enclose regions of
low-momentum fluid induced by their counter-rotating legs, and align in the streamwise
direction, giving rise to the low-momentum streaks observed by Ganapathisubramani,
Longmire and Marusic [3], Hutchins and Marusic [7], Delo, Kelso and Smits [8] and Kim
and Adrian [9] among others. Furthermore, Adrian et al. [4] postulated that hairpin packets
evolve and grow in size, and eventually give rise to smaller, younger, slower packets, thus
resulting in a nested hierarchy of packets. Adrian et al. [4] also noticed that most naturally
occurring hairpins show a degree of asymmetry and are often cane-like in appearance.
Following this work, the term ‘hairpin’ is used throughout to refer both to symmetric and
asymmetric cane-like vortices, and includes both the elongated hairpins and the horseshoes
or vortex loops found at different Reynolds number by Head and Bandyopadhyay [6].

In 2006, Martı́n, Smits, Wu and Ringuette [10] were able to show the temporal evolution
of a hairpin packet in turbulent flow over a compression corner. They identified three
hairpins belonging to a packet by visual inspection, and then identified these same hairpins
in later frames.

Although the identification of hairpins and hairpin vortices has been accomplished,
manually tracking these structures is time consuming. The study of hairpin packet forma-
tion, evolution, interaction and influence on flow features (such as the wall shear stress and
wall pressure) requires sophisticated, reliable and automated tools for packet identification.
In this paper, we describe an automated and scientifically rooted method to identify and
temporally track hairpin packets and their wall signatures (as described in Section 3) in
three-dimensional space and time DNS data of turbulent boundary layers. Statistical tools
and pattern recognition algorithms are used to identify hairpin packets and their wall sig-
nature, and object segmentation and feature-tracking algorithms are assessed and enhanced
to achieve the monitoring of the temporal and spatial evolution of packets and their wall
signatures. The paper is organized as follows: Sections 2 and 3 describe the criteria for
identifying hairpin packets and their wall signatures in terms of a geometric algorithm
and statistical analysis. Section 4 describes the relationship between the geometric and
statistical packet identification techniques. Section 5 describes the object segmentation and
feature tracking algorithms. Section 6 presents the tracking of a single, synthetically gener-
ated hairpin vortex in DNS data and Section 7 presents similar results from fully turbulent
boundary layer DNS data. Conclusions are presented in Section 8.

2. Identifying hairpin vortices and hairpin packets

Vortex identification criteria rely on definitions of the vortex that are more mathematical in
nature than those described above. One such definition is provided by Robinson, Kline and
Spalart [1]:
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Journal of Turbulence 3

A vortex exists when instantaneous streamlines mapped onto a plane normal
to the vortex exhibit a roughly circular or spiral pattern, when viewed from a
reference frame moving with the center of the vortex core.

Several criteria for identifying structures consistent with this description have been pro-
posed. Taylor, Martı́n and Smits [11] compared the performance of three such criteria:
The discriminant of the velocity gradient tensor criterion suggested by Chong, Perry and
Cantwell [12], the swirling strength criterion postulated by Zhou, Adrian, Balachandar and
Kendall [13] and the Hessian of pressure criterion suggested by Jeong and Hussain [14].
Taylor et al. [11] found that the three criteria gave nearly identical results for supersonic
turbulent boundary layers.

Following Zhou et al. [13], Ringuette et al. [2] used the swirling strength as the pri-
mary criterion for vortex identification in their study of hairpin packets in DNS data. They
showed that it is possible to identify hairpin vortices and hairpin packets and determine
average package properties in DNS data of compressible boundary layers. The authors used
iso-surfaces of swirling strength to visualize vortex structures and devised an algorithm
that singled out hairpins and hairpin packets using their geometric properties. In contrast,
Green, Rowley and Haller [15] used direct Lyapunov exponents (DLE) as a tool for identi-
fying hairpin vortices in DNS data. They performed this analysis in a single synthetically
generated hairpin vortex evolving into a packet described by Zhou et al. [13] and showed
that the DLE analysis is in close agreement with the swirling strength criterion.

The DLE is an integrative technique, which is powerful in identifying the most dom-
inant structure present. It, however, cannot be used to study the local instantaneous fluid
interactions. For this reason, we chose to employ the instantaneous geometric algorithm in
the present study. Further details about the swirling strength criterion and the geometric
algorithm are given below.

2.1. Visualization of vortex structures

In this study, iso-surfaces of swirling strength are used as the primary criterion for vortex
identification, following Zhou et al. [13] and Ringuette et al. [2]. The swirling strength
(λ2

ci) is defined as the square of the imaginary component of the eigenvalues of the velocity
gradient tensor. A formal description of the swirling strength is given in Zhou et al. [13]
and is summarized here.

The velocity (�u) gradient tensor is denoted by the 3×3 real matrix A, where

A = ∇�u =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

Then the characteristic equation of A is

λ3 + Pλ2 + Qλ + R = 0 (2)

where

P = −tr(A) (3)
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4 C.O’Farrell and M.P. Martı́n

Q = 1

2
[P 2 − tr(AA)] (4)

R = 1

3
[−P 3 + 3PQ − tr(AAA)]. (5)

Substituting λ = λ̃ − 1
3P Equation (2) becomes

λ̃3 + Q̃λ̃ + R̃ = 0 (6)

where Q̃ = Q − 1
3P 2 and R̃ = R + 2

27P 3 − 1
3PQ. The discriminant of A is then

� =
(

1

3
Q̃

)3

+
(

1

2
R̃

)2

. (7)

When � > 0, A will have one real eigenvalue and a complex conjugate pair of eigen-
values, and when � ≤ 0 all three eigenvalues are real. Although Chong et al. [12] claim
that � being strictly greater than zero is a sufficient condition for determining the presence
of a vortex, Zhou et al. [13] examined the eigenvalues of A. Letting λci be the imaginary
component of the complex eigenvalues of A then the swirling strength (λ2

ci) becomes

λ2
ci = 3

4

[(
1

2
R̃ +

√
�

) 1
3

−
(

1

2
R̃ −

√
�

) 1
3

]2

. (8)

The eigenvalues of the velocity gradient tensor characterize the fluid’s local velocity, and
the existence of a pair of complex eigenvalues of ∇�u therefore indicates a spiraling motion
consistent with the presence of vortices. Furthermore, Zhou et al. [13] have remarked that
the strength of the local swirling motion is quantified by λci , and hence this criterion is
referred to as the ‘swirling strength’.

The swirling strength criterion distinguishes between rotations caused by isolated vortex
cores and angular deformation caused by shear layers, so it can be used to filter out shear
layers. It does not, however, differentiate between in-plane rotation in the clockwise and
counter-clockwise directions, so it cannot differentiate between regions where direction of
rotation is consistent with Theodorsen’s hairpin model and regions where the direction of
rotation is inconsistent with this model.

2.2. Geometric identification of hairpin packets

Ringuette, Wu and Martı́n [2] developed a method for finding hairpin packets in DNS data
for turbulent boundary layers and characterizing their average properties. They developed an
algorithm that searched streamwise-wall-normal (x–z) planes for hairpin vortex ‘heads’ that
were grouped together into ramp-like structures that formed a shallow downstream angle
with the wall. These criteria are consistent with the hairpin packet model of Adrian et al. [4],
and with the experimental results of Head and Bandyopadhyay [6] and Brown and Thomas
[16]. Ringuette et al. [2] used their packet-finding scheme to analyze data for a Mach 3
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turbulent boundary layer with Reθ = 2390 and determined the average package properties.
The authors found that hairpin packets, on average, were inclined with a downstream angle
to the wall of approximately 20◦, spanned approximately 0.4δ in the streamwise direction,
and convected with a speed of 0.7Uδ , where δ and Uδ are the boundary-layer edge and
the boundary-layer-edge velocity, respectively. These results are in agreement with those
of Adrian et al. [4], Ganapathisubramani et al. [3] and Head and Bandyopadhyay. In this
paper, we use the geometric hairpin packet identification scheme of Ringuette et al. [2],
which is briefly summarized below.

At every plane, the authors used both the swirling strength (λ2
ci) and the vorticity

(ω) as criteria for identifying potential vortex heads. The swirling strength was used to
filter out shear layers, and the vorticity was used to distinguish between regions of large,
positive out-of-plane vorticity, which are consistent with Theodorsen’s model, and regions
of large, negative out-of-plane vorticity which are not. As a result, at every plane the
authors identified those regions where λ2

ci exceeded 4.5λ̄2
ci (where, the overbar indicates the

mean) and the out-of-plane vorticity exceeded the mean by at least two standard deviations,
considering only regions that lie between the buffer region (defined as z+ = 30) and the
boundary layer edge (defined where u = Uδ ≡ 0.985U◦, and U◦ is the free stream velocity).
These regions were marked as potential hairpin head vortices.

These criteria were seen to occasionally select structures that were too large to be hairpin
head vortices and were most likely hairpin vortex legs, so a size threshold was introduced.
Ringuette et al. [2] used a maximum size criterion of 0.1δ × 0.1δ and categorized all
larger structures as legs. These ‘legs’ may be attached below a hairpin head, so the authors
investigated these structures to determine whether they could be partitioned into a head and
leg, and reclassified any heads they found as such.

Once the locations of hairpin head vortices were determined, Ringuette et al. [2] used
geometric criteria consistent with the model of Adrian et al. [4] to group the head vortices
into packets. The head vortex that was closest to (x = 0, z+ = 30) was chosen as the
reference head vortex for the first packet, and the algorithm then searched the remaining
head vortices that were within a streamwise distance of 0.5δ and formed an angle between
0◦ and 45◦ with the reference head vortex. If one such vortex was found, it was identified as
forming a packet with the reference vortex and was taken as the new reference head vortex
for the packet. This process was repeated until all vortices belonging to the first packet
were identified. Then the search proceeded to the next packet until all head vortices were
grouped into their respective packets.

Figure 1(a) from Ringuette et al. [2] shows the results of running the geometric identifi-
cation algorithm on one x–z plane of DNS data for a Mach 3 turbulent boundary layer with
Reθ = 2390. The black rectangles mark the three head vortices that have been identified
as belonging to the same packet by their geometric properties. As expected, they are aligned
with a shallow downstream angle relative to the wall. Figure 1(b) [2] shows the same packet
visualized in three dimensions using iso-surfaces of swirling strength. The geometric algo-
rithm of Ringuette et al. [2] performs well when identifying hairpins and hairpin packets
that are consistent with Adrian et al.’s [4] model in fully turbulent boundary layer data.

3. The wall signatures of hairpin packets

Several experiments (Brown & Thomas [16, 17], Thomas & Bull[18]) and numerical
simulations (Ringuette et al. [2], Ahn, Graham & Rizzi [19], Kasagi, Suzuki & Iida [20])
have found patterns in the wall shear, wall pressure and correlations between wall shear and
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6 C.O’Farrell and M.P. Martı́n

Figure 1. Geometric packet identification from Ringuette, Wu and Martı́n [2] in DNS data of
turbulent boundary layers. (a) shows a streamwise wall-normal slice containing a hairpin packet.
Contours show spanwise vorticity, vectors show velocity with 0.69Uδ substracted from u. Three
hairpin heads have been identified and highlighted using black rectangles. (b) shows the same packet
visualized using iso-surfaces of swirl strength, where the hairpins in the packet have been highlighted
in red.

velocity that are indicators of the presence of organized structures in the boundary layer.
These characteristic patterns in the flow properties at the wall induced by hairpin packets
are collectively referred to as the wall signatures of hairpin packets. Such signatures can be
used to identify and track hairpin packets.

In a 1977 experiment, Brown and Thomas [16, 17] monitored the shear stress at the wall
and the velocity at several points from the wall to identify large-scale organized structures.
Using an array of hot wires and a wall shear stress probe, they measured the correlation
between shear stress at the wall and velocity in turbulent boundary layers. This analysis
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Journal of Turbulence 7

Figure 2. Model of organized structures in turbulent boundary layers from Thomas and Bull [18],
after Brown and Thomas [16], as seen by an observer moving at 0.8U0.

allowed them to detect the presence of large structures that are inclined with a shallow
(18◦) downstream angle relative to the wall, which is consistent with the results of Head
and Bandyopadhyay [6] and the hairpin packet model of Adrian et al. [4]. Additionally,
studying the evolution of the wall shear stress led Brown and Thomas [16, 17] to conclude
that these large-scale structures also induce small-scale wall shear stress fluctuations that
convect with the organized structure. Burton [21], Willmarth [22] and Thomas and Bull
[18] also found a characteristic signature in the wall pressure fluctuations that is associated
with the presence of a large structure in the boundary layer. Figure 2 is a schematic from
Thomas and Bull [18] showing the large structure and associated wall shear and wall
pressure distributions.

In the present work, we use the wall shear stress and velocity correlation analysis as a
criteria to identify and track strong packets. Regions of the wall where such correlations
are elevated are interpreted as signatures indicating the presence of a hairpin packet. The
Brown and Thomas [16] correlation analysis is briefly described below.
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8 C.O’Farrell and M.P. Martı́n

Figure 3. Correlations between wall shear stress and velocity versus time delay at various wall-
normal locations from Brown and Thomas [16]. ×, y/δ = 0.05; +, y/δ = 0.25; 	, y/δ = 0.50;
o, y/δ = 0.75.

3.1. Wall shear stress and velocity correlations

Brown and Thomas [16] calculated the long-time averaged correlation between the shear
stress at a point at the wall and the velocity at a certain distance from the wall

Rτwu(T ) = lim
Ts→∞

∫ Ts

0
τw(t)u(t + T ) dt, (9)

where τw(t) is the shear stress at the wall at time t and u(t + T ) is the streamwise velocity
at time t + T , where T is a nondimensional time delay. Figure 3(a) shows their results when
the hot wires were stacked vertically directly above the hot film. Notice how the correlations
peak at increasing time delay as the probes are moved farther from the wall. To obtain the
plot in Figure 3(b), the authors varied the streamwise location of the hot wires until the
correlation peaked at zero time delay. The locations that yielded correlation maxima at zero
were found to form an 18◦ angle with the wall.

Ringuette et al. [2] were able to perform a similar analysis on DNS data for turbulent
boundary layers. They calculated the correlation between the shear stress at a point at the
wall and the velocity at a certain distance from the wall using

Rτwu(�x) = 1

(x2 − x1)

〈∫ x2

x1

τ ′
w(x)u′(x + �x)dx

〉
/τ ′

w,RMSu
′
RMS, (10)

where the overbar and angle brackets indicate spatial (streamwise and spanwise) and
temporal averaging, respectively. Figure 4 shows the results from Ringuette et al. [2].
Figure 4(a) shows standard correlations, while Figure 4(b) shows the ‘enhanced’ cor-
relations, obtained by conditionally averaging the instances in which the correlation at
z/δ = 0.25 was greater that 0.3 at the peak �x location shown in Figure 4(a). The results
shown in Figure 4 were found to agree with those of Brown and Thomas [16].

In the present work, we use Equation. 10 without the averaging to determine the
correlation coefficient profiles between the shear stress at the wall and the velocity, for each
point at the wall. We use a correlation width that is large enough for both the correlations
to fall below 0.2. The regions where the maximum value of this correlation at a distance
of 0.2δ from the wall exceeded five times the average correlation coefficient are identified.
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Journal of Turbulence 9

Figure 4. Correlations between wall shear stress and velocity versus streamwise distance at var-
ious wall-normal locations from Ringuette, Wu and Martı́n [2]. (a) Standard correlations, and (b)
‘enhanced‘ correlations.

These areas constitute the wall signatures of ‘strong’ packets, indicating a ‘strong’ event’
such as a turbulent burst in the lower part of the boundary layer.

4. Relationship between the geometric algorithm and the correlation method

We determine profiles of the convection velocity for vortices belonging to hairpin packets
using both the geometric algorithm and the ‘enhanced’ correlation data. For the geometric
algorithm, the convection velocity of a single vortex in a packet is computed by averaging u

at each grid point within the vortex; the value is then associated with a wall-normal location
corresponding to the vortex core, assumed to be maximum for the vortex λci .

For the ‘enhanced’ correlation method, we obtain the packet convection velocity at the
eleven wall-normal distances by computing the correlation profiles between u and the shear
stress at each (x, y) wall location (no spanwise or streamwise averaging). If the correlation
peak at z/δ = 0.2 indicates a ‘strong’ event, the streamwise velocity u is sampled at the
(x + �x, z) peak location of the correlation profile at each of the eleven wall-normal
distances. The results at each z-location are averaged together. The (x + �x, z) peak
locations can be thought of as lying within the back of the ramp-like structure associated
with each instantaneous strong event. We present the ‘enhanced’ correlation and geometric-
algorithm data spanwise averaged over all planes.

Essentially, statistics on the average packet structure can be found using the correlation
analysis of Brown and Thomas [16] and the data can be categorized into average-strong,
average-average, and average-weak packets. In contrast, the geometric algorithm identifies
only the subset of packets that conforms with an ideal geometric criteria. When the ge-
ometric analysis is combined with the correlation analysis, the geometric events can also
be decomposed into average strong-geometric, average-geometric, and weak-geometric
packets. Figure 5 plots the averaged vortex convection velocity and the mean flow veloc-
ity profiles for the Mach 3 and Reθ = 2390 data [23], given by the geometric analysis
combined with the correlation analysis. For reference, the average convection velocity of
strong packets given solely by the correlation analysis is also plotted, along with the mean
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10 C.O’Farrell and M.P. Martı́n

u/U∞

z/
δ

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Uc, geometric: Strong
Uc, geometric: Average
Uc, geometric: Weak
Uc, B&T statistical: Strong
Umean

Figure 5. Vortex convection velocity profiles, with the mean velocity profile in the solid line. The
use of ‘geometric events’ at the wall limit the correlation analysis to regions where ideal hairpin
packets have been found, which corresponds to the first three legend entries. The convection velocity
determined from the ‘strong’ Brown and Thomas [16] correlation is plotted as a square symbol.

velocity profile. The data suggest that the average geometric packet is representative of
strong statistical packets.

5. Tracking scheme

We use a combination of geometric [2] and statistical methods [16], as well as the object
segmentation and feature tracking routines developed by Wang and Silver [24] to identify
hairpin packets and track them temporally and spatially in DNS data of turbulent boundary
layers.

5.1. Identification of strong packets

The Ringuette et al. [2] analysis is applied to every volume of DNS data. At every plane,
we identify the hairpin head vortices and group them into packets based on the geometric
criteria consistent with the model of Adrian et al. [4]. By performing this analysis, we
are able to recover all of the transverse hairpin head vortices that belong to a hairpin
packet. When performing the in-plane analysis, however, the algorithm discards elongated
structures that could potentially be hairpin legs.

We are interested in identifying and tracking a handful of strong packets. Following the
analysis of Brown and Thomas [16], we interpret regions where the correlation between τw

and ρu is elevated as signatures indicating the presence of a strong hairpin packet, and only
those packets identified by the geometric criteria and whose location corresponds with the
presence of a Brown and Thomas [16] wall signature are selected for tracking.

We find that the streamwise location of the wall signatures corresponds closely with the
streamwise location of the vortex legs of hairpins in strong packets, and that the signatures
are offset slightly from these elongated vortex legs in the spanwise direction. We use these
two facts, along with the condition that λ2

ci exceed 4.5λ̄2
ci to reconstruct the vortex legs of

the hairpins in strong packets.
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5.2. Tracking software

We are interested in tracking each packet to observe its evolution. This is achieved by using
the object segmentation and feature tracking algorithms developed by Wang and Silver [24]
and implemented in the Object Segmentation and Feature Tracking (Ostrk2.0) package
[25].

Ostrk2.0 is a software package for Advanced Visual Systems/Express (AVS), a program
that serves as a platform for building applications to process and visualize complex data
sets. The Ostrk2.0 package allows users to track objects in sequential data sets with similar
grid coordinates, each one representing a single time step or frame. The data sets must
contain data corresponding to a single variable (such as λ2

ci), which is used to compute
iso-surfaces at a user-specified threshold. The object segmentation and feature-tracking
algorithms are then applied to these iso-surfaces.

The Ostrk2.0 package performs two routines on the data sets: Object segmentation and
feature tracking. During the object segmentation routine, each connected object in a plot
of iso-surfaces of swirling strength is identified as a separate object. The outcome of the
object segmentation routine is therefore dependent on the threshold value used to generate
the iso-surface, which is entered by the user as a percentage of the maximum value of the
swirling strength in the first frame. This value is used in all subsequent data sets for the
generation of iso-surfaces. An a priori knowledge of a suitable threshold value is therefore
required.

Each connected object identified by the object segmentation routine is given a unique
object identification number (object ID), and its geometric properties are stored. Between
calls to the object segmentation routine for different data frames, the feature tracking routine
is called. The feature tracking routine links every object ID in a given frame to an object
ID in the preceding frame, thus recording the evolution of each object. The algorithm used
to perform this task was also designed by Wang and Silver [24]. It employs a minimum
geometric difference scheme in a recursive octree algorithm to determine the most likely
predecessor(s) of each object. The algorithm recognizes the creation of new objects, the
merging of objects and their split and dissipation. The object histories are output in a single
∗.trakTable file, and the geometric properties of the objects in each frame are output in
∗.poly and ∗.uocd files corresponding to each frame.

In this study we are interested in tracking the evolution of strong hairpin packets. Thus,
all other vortices are removed from the dataset by setting the value of λ2

ci to zero for all

points not belonging to strong packets. A threshold of λ2
ci = 4.5λ̄2

ci is then specified to
generate an iso-surface of λ2

ci that contains only the strong hairpin packets. Ostrk2.0 is then
applied to this iso-surface to track the evolution of the strong packets in sequential data
frames.

5.3. Analysis of tracking results

The results of tracking Ostrk2.0 are output as a single ∗.trakTable file containing the history
of each object Ostrk identified and a series of files (including ∗.poly and ∗.uocd files)
containing information about the objects at each single time step.

In Ostrk2.0’s ∗.poly files, each object is defined as a polygon. These files can be viewed
in AVS with the help of a specialized module, and can be modified to change the color of
specific polygons or even remove them altogether. The ∗.poly files generated by Ostrk2.0
were therefore used to create new *.poly were the relevant vortices are highlighted in
particular colors, or where all other vortices have been removed. These new ∗.poly files
were then visualized using AVS.
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12 C.O’Farrell and M.P. Martı́n

Figure 6. Evolution of a single hairpin in a channel. Iso-surfaces of swirling strength show the
hairpin in its early stages (a) and after it has spawned a new hairpin (b). Click here to watch the
corresponding movie.

Figure 7. Evolution of the wall shear and wall pressure signals. (a) and (b) show the position of
the hairpin using iso-surfaces of swirl strength. (c) shows the wall shear along a streamwise line at
y/δc = 2.97, (d) shows the wall pressure along a streamwise line at y/δc = 2.97.
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Ostrk2.0’s ∗.uocd file contains information about each object in a given frame, including
which points in the original data set comprise it and the values of λ2

ci at each of these points.
These files therefore provide the information that allowed us to export the results of the
tracking into Tecplot for further processing, and even allowed to export modified data sets
in which only a portion of the objects were included.

6. A canonical case

We first consider a simple canonical flow consisting of a single isolated hairpin convecting
in incompressible channel flow. The DNS database is from Green, Rowley and Haller [15],
who extracted a hairpin from a DNS of a fully developed turbulent channel flow at Reynolds
number based on wall friction velocity and channel half width of Reτ =180, and used a flow
field containing this vortex alone as the initial condition to their DNS solver. In this flow,
we monitor the wall signature of the single hairpin using the wall-shear and wall-pressure
signals, and the correlations between wall shear and velocity. This simple flow is perfectly

Figure 8. Evolution of the wall shear and wall pressure signals. (a) and (b) show the position of
the hairpin using iso-surfaces of swirl strength. (c) shows the wall shear along a streamwise line at
y/δc = 2.97, (d) shows the wall pressure along a streamwise line at y/δc = 2.97. Click here to watch
the corresponding movie.
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14 C.O’Farrell and M.P. Martı́n

suited for testing the hypotheses concerning hairpin wall signatures presented earlier, since
the simplicity of the data allows us to clearly identify a single hairpin’s signature.

Figure 6(a) shows the iso-surface of λ2
ci at 10% of the maximum swirl value for the

initial frame in the dataset. Here the hairpin is in the early stages of development. Figure
6(b) is a later frame showing the now mature primary hairpin, and the secondary hairpin it
has spawned. The evolution of the hairpin and its development into a packet was recorded
into an animation which is included with this study.

In Figure 7, distinct signatures in τw and pw are seen to coincide with the streamwise
and spanwise locations of the hairpin. Figures 7(b) also show iso-surfaces of λ2

ci (10% of
the maximum swirl) at the initial frame from the (a) top and (b) side. Figure 7(c) shows τw

along a line parallel to the direction of flow (the x-axis) at y/δc = 2.97. The location of the
line along which the wall shear was monitored corresponds to the spanwise alignment of
the center of the hairpin. Comparing Figures 7(a–b) and Figure 7(c) show that a peak in τw

coincides with streamwise location of the tip of the hairpin’s vortex legs. A similar result
was observed in the wall pressure signature along the same streamwise line. Figure 7(d)
shows a decrease in pw that corresponds with the streamwise location of the intersection
between the hairpin’s head and legs in Figures 7(a–b).

The results of Figure 7 are shown again in Figure 8, for a later frame. Figures 8(a–b)
show that the hairpin has convected approximately 1.5δc downstream. Figures 8(c–d) show
that the peak in τw and well in pw have convected downstream accordingly, so that their
locations still correspond to the hairpin’s position. The evolution of the hairpin and τw wall
signature throughout the entire data set was recorded and is included as an animation.

A similar hairpin wall signature in the Brown and Thomas [16] correlation results is
seen in Figure 9, which shows the location of wall regions where the value of the Brown and
Thomas correlations exceed five times the average correlation for the volume (Rτu = 5 ¯Rτu).

x/ c

0

1

2
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4

5

6

y/
c 2
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3
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4

Figure 9. Wall signature corresponding to the hairpin’s legs, determined using Brown and Thomas
[16] correlations between velocity and shear stress. Regions where the correlation coefficient exceeds
five times the average appear in red.
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Figure 10. Pre-processing the input to the object segmentation routine in DNS data [23]. (a) Hairpin
head vortices (the points identified by the packet finding algorithm) are visualized using an iso-
surface of λ2

ci = 4.5λ̄2
ci (in blue). The original iso-surface of λ2

ci = 4.5λ̄2
ci is shown in green at 50%

translucency for reference. (b) Hairpin head vortices are again visualized using an iso-surface of
λ2

ci = 4.5λ̄2
ci (in blue), and the result of attempting to reconstruct their legs using an iso-surface of λ2

ci

as the only criterion is shown in green using with an iso-surface of λ2
ci = 4.5λ̄2

ci .
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16 C.O’Farrell and M.P. Martı́n

The regions of elevated correlation at the wall are shown in red, and an iso-surface of swirl
showing the relative position of the hairpin is shown in blue. The two smaller red regions
on either side of the volume centerline are signatures corresponding to each of the hairpin’s
legs, while the elongated region running through the center of the volume is a result of the
volume being small in relation to the hairpin’s size. Figure 9 shows that the streamwise
location of the two signatures coincides with the streamwise location of the hairpin’s vortex
legs, but the signatures appear at either side of the hairpin in the spanwise direction.

7. Turbulent boundary layer

We use a DNS database of a boundary layer at Mach 3 and Reynolds number based
on momentum thickness of Reθ = 2300 from Martı́n [23]. The methods described in
the previous sections are used to identify strong hairpin packets and monitor their local
evolution and wall signature.

Figure 10(a) shows an iso-surface of λ2
ci = 4.5λ̄2

ci for the initial frame in the bound-
ary layer database. The hairpin head vortices identified by the packet-finding geometric
algorithm have been highlighted in blue, and all other vortices are shown in green at 50%
translucency. Figure 10(b) shows the result of attempting to form the legs of the hairpin
heads using an iso-surface of λ2

ci as the only criterion for reconstruction. Again, the hairpin

head vortices have been visualized using an iso-surface of λ2
ci = 4.5λ̄2

ci and highlighted in
blue, and the tentative reconstructed legs are shown in green using an iso-surface at the
same level. Comparing Figures 10(a) and 10(b) shows that λ2

ci is an insufficient criterion
for reconstructing vortex legs, since most of the vortices in Figure 10(a) appear among the
tentative reconstructed legs of Figure 10(b), regardless of their shape.

The wall signatures are combined with the result of the geometric packet-finding algo-
rithm in order to identify ‘strong’ packets and recover their vortex legs. Figure 11 shows

Figure 11. Probability density function of the normalized correlation coefficient between the wall
stress and momentum, Rτwρu/Rave.
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Journal of Turbulence 17

the probability density function (PDF) of the correlation coefficient Rτwρu (normalized by
the average correlation Rave). Regions where the correlation exceeds five times the average
correlation represent less than 5% of all points on the wall, and were hence interpreted as
the wall signatures of strong packets.

Figure 12 shows a comparison of the results of attempting to group hairpins into
packets and color them differentially using only the geometric packet-finding algorithm
(Figure 12(a)) and a combination of this algorithm with the statistical correlation criterion
for identifying strong packets and recovering their legs (Figure 12(b)). Both figures show

Figure 12. Grouping hairpins into packets using (a) the geometric packet-finding algorithm only, and
(b) a combination of this algorithm and the statistical correlation criterion. Iso-surfaces of λ2

ci = 4.5λ2
ci

are shown in white, and vortices in the same packet are highlighted with the same color.
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18 C.O’Farrell and M.P. Martı́n

Figure 13. Reconstructed hairpin packets. The red region at the wall represents the packet’s wall
signature. The hairpin head vortices and their reconstructed legs are visualized using iso-surfaces
of λ2

ci = 4.5λ̄2
ci shown here in blue and green respectively. (a) shows a best case scenario, where all

three hairpins in the packet have been identified entirely by the packet-finding algorithm and no leg
reconstruction is required. (b) shows a typical case, where one of the hairpin legs is reconstructed
using the hairpin’s Brown and Thomas wall signature.

Figure 14. Tracking a hairpin packet in DNS data of a Mach 3 boundary layer at Reθ = 2300. A
hairpin packet is identified in (a) and visualized using an iso-surface of swirling strength, shown here
in blue. An iso-surface of swirling strength showing all other vortices is included in green and at 50%
translucency. The hairpin packet was then tracked through subsequent DNS frames (b) through (d).
Click here to watch the corresponding movie.
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iso-surfaces of λ2
ci = 4.5λ̄2

ci in white, and hairpins in the same packet are highlighted in
the same color. Notice that in Figure 12(a) hairpins have been grouped into large packets
that are not consistent with currently available evidence on the shape and size of hairpin
packets. In Figure 12(b), however, several smaller strong packets have been identified. The
size of the packets identified in Figure 12(b) is consistent with that reported in Ringuette
et al. [2] and Adrian et al. [4].

The performance of the method for identifying and reconstructing strong packets is
shown in Figure 13. In Figure 13(a) a strong packet consisting of three hairpin vortices is
shown in blue. Wall signatures in the region surrounding the packet are shown in red. In this
case, the hairpins in the packet were identified wholly by the geometric algorithm, so no
leg reconstruction was required. Figure 13(b), on the other hand, shows a two-vortex packet
were the Brown and Thomas [16] wall signatures were used to reconstruct the downstream
hairpin’s vortex leg (the reconstructed portions are shown in green). Figure 13(a) represents
an ideal result, whereas 13(b) a typical result.

The packet in Figure 13(a) is shown again in Figure 14(a). Once again, the packet is
shown in blue, but all other vortices are also included in green and at 50% translucency.
This packet was then tracked through 27 DNS frames and the temporal and spatial evolution

Figure 15. Evolution of the wall shear and wall pressure signals. (a) and (b) show the position of the
hairpin packet using iso-surfaces of swirl strength from top and side views, respectively. (c) shows
the wall shear along a streamwise line at y/δ = 0.25.
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20 C.O’Farrell and M.P. Martı́n

Figure 16. Evolution of the wall shear and wall pressure signals. (a) and (b) show the position of the
hairpin packet using iso-surfaces of swirl strength from top and side views, respectively. (c) shows
the wall shear along a streamwise line at y/δc = 0.25. Click here to watch the corresponding movie.

of the hairpin packet was recorded into an animation included with this work. Figures 14(b)
through 14(d) show the same packet at later time frames.

In addition to recording the evolution of a single packet, we also monitored the wall
shear signature generated by the packet. Figures 15(a–b) show the same hairpin packet using
iso-surfaces of λ2

ci from the (a) top and (b) side. Figure 15(c) shows τw along a line parallel
to the direction of flow (the x-axis) at y/δ = 0.25. The location of the line along which
the wall shear was monitored corresponds to the spanwise alignment of the hairpin packet,
and a peak in τw at approximately 1.7δ is seen to coincide with the streamwise location
of the upstream end of the packet. The same quantities are plotted again in Figure 16,
for a later frame. The packet has convected downstream approximately 1δ and a peak in
τw at approximately 2.4δ is seen to again coincide with the streamwise location of the
upstream end of the packet.

8. Conclusions

We use a geometric packet-finding algorithm [2] to identify hairpins and group them into
packets, according to the hairpin packet model of Adrian et al. [4]. We use a correlation
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analysis [16] to identify those packets with a strong wall signature and object segmentation
and feature tracking algorithms [24] to track the evolution of each strong packet through
multiple DNS data frames.

The swirling strength can be used by itself to identify vortical structures in a volume of
data, regardless of the structure being part of a packet. The geometric algorithm using the
swirl strength allows for the identification of ideal, i.e. conforming to some pre-set criteria
such as those found empirically, packets in the data. The geometric algorithm together with
the wall-shear and velocity correlation analysis, provide a procedure to group packets into
strong, average and weak, thereby enabling conditional statistics of hairpin packets that we
can isolate and visualize. It is found that packets identified using the ideal geometric criteria
correspond with strong statistical packets identified using the correlation criteria, in terms
of their convection velocity relative to the mean. When the tracking feature is coupled with
the geometric packet identification algorithm and the wall-shear and velocity correlation
analysis, the resulting tool enables autonomous tracking of individual packets to study their
spatial evolution and wall signature in space and time.

Regarding the tracking procedure, the geometric algorithm by itself generally truncates
hairpin legs. We find that the hairpin vortex legs can be reconstructed using the information
provided by the statistical correlation analysis. Similarly, the combined object segmenta-
tion and tracking algorithm result in anti-physical proliferation of hairpinpacket structures.
When we combine the physical criteria provided by the geometric algorithm and the statis-
tical correlation analysis, we are able to isolate individual hairpin packets and successfully
track them in time, automatically.

We find satisfactory results for tracking an isolated hairpin packet and the signature
of the packet in time, convecting in channel flow. Similar results are obtained for a fully
turbulent boundary layer at Mach 3.

The procedures for structure identification and tracking can be used in combination
with experimental PIV data.
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