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A description of different inflow methodologies for turbulent boundary layers, including validity and
limitations, is presented. We show that the use of genuine periodic boundary conditions, in which no
alteration of the governing equations is made, results in growing mean flow and decaying
turbulence. Premises under which the usage is valid are presented and explained, and comparisons
with the extended temporal approddh Maeder, N. A. Adams, and L. Kleiser, “Direct simulation

of turbulent supersonic boundary layers by an extended temporal approach,” J. Fluid 428ch.

187 (2001)] are used to assess the validity. Extending the work by Letal. [J. Comput. Phys.

140 233(1998], we propose an inflow generation method for spatial simulations of compressible
turbulent boundary layers. The method generates inflow by reintroducing a rescaled downstream
flow field to the inlet of a computational domain. The rescaling is based on Morkovin’s hypothesis
[P. Bradshaw, “Compressible turbulent shear layers,” Annu. Rev. Fluid M@cB3 (1977 ] and
generalized temperature—velocity relationships. This method is different from other existing
rescaling techniqugs. Stolz and N. A. Adams, “Large-eddy simulation of high-Reynolds-number
supersonic boundary layers using the approximate deconvolution model and a rescaling and
recycling technique,” Phys. Fluid45, 2398 (2003; G. Urbin and D. Knight, “Large-eddy
simulation of a supersonic boundary layer using an unstructured grid,” AIA39J1288(2001)],

in that a more consistent rescaling is employed for the mean and fluctuating thermodynamic
variables. The results are compared against the well established van Driest Il theory and indicate
that the method is efficient and accurate. 2004 American Institute of Physics.

[DOI: 10.1063/1.1758218

I. INTRODUCTION governing equations to remove mass and decrease boundary
layer thickness, and a useful region for data collection, in
The simulation of turbulent boundary layers requireswhich there are no extra terms. In the streamwise direction,
streamwise inflow and outflow boundary conditions. The usehe simulation domain is assembled with one useful region
of a buffer domaifh or a sponge layér in combination with  and two fringes at its ends and periodic boundary conditions
nonreflecting boundary conditions can successfully handlare applied. Thus, the flow that goes out from the down-
the outflow. The specification of the inflow boundary condi-stream end of the data collection region comes into the up-
tions, however, is more problematic and challenging. A tur-stream end after passing through the two fringes. The method
bulence eddy in a boundary layer has the memory of itgesults in a spatial simulation and can take into account the
upstream history. This fact makes it desirable to specify atreamwise pressure gradient. The rescaling method is based
realistic time series of turbulence at the simulation inlet. Theon scaling laws of turbulent boundary layers. The inflow is
generation of such a time series of turbulence data results ifenerated by rescaling the flow field at a downstream station
conflicts between efficiency and accuracy. Creating accuratgnd reintroducing it at the upstream inlet. It can be easily
inflow conditions may require costly independent simula-implemented to yield a spatial simulation and works very
tions or forced transition, and a cost-saving but crude inflowyell with little or no transient near the inlet boundary. In
generation method may need a long development section beamporal simulations, periodic boundary conditions are used,
hind the inlet for the flow evolution to be realistic. Typical artificially making the inflow exactly the same as the outflow.
inflow generation techniques can be organized into three cai turbulence eddy going out from the outlet comes back into
egories, as shown in Fig. 1. the domain at the inlet without any modifications. To reduce
The first category consists of the fringe metffothe artificial effects, the streamwise size of the domain should be
rescaling method,and methods for temporal simulatiéi®  |arge enough at least to decorrelate turbulence eddies at the
The inflow in this category comes from the outflow with or inlet and those in the middle between the inlet and the outlet.
without modification. The fringe method distinguishes aA genuine temporal simulation solves the original governing
fringe region, in which finite extra terms are added to theequations, while improved temporal simulations add forcing
in the governing equations to account for the streamwise

aAuthor to whom correspondence should be addressed. Telephone: so§ihomogeneity of boundar'y Iayers.' _
258-7318; fax: 609-258-1993. Electronic mail: pmartin@princeton.edu The second category involves inflow generation by out-
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(1) Operations

relax the conditions that must be satisfied for the validity of
TDNS we introduce a new rescaling method that leads to
spatial simulations of compressible turbulent boundary lay-
ers. Results from the rescaling method are given and also
compared to the well-established theoretical predictfdns.
Stolz and Adanté and Urbin and KnigHf implement simi-

lar methods. The differences between these methods and the
present technique are described in Sec. lll.

(2) Auxiliary
Simulations

(3) Transition

Buffer/Sponge

FIG. 1. Schematic showing inflow generation techniques.

II. PERIODIC BOUNDARY CONDITIONS

side mechanisms, such as an auxiliary simulation and super- Periodic boundary conditions are widely used in the ho-

position of random fluctuations on desired mean profiles. L{nogeneous d|re_ct|ons of turbulen'F 5|mulat|o_ns. The usage s
et al? present a method to generate the inflow boundary conP"@Ved to be valid by many numerical experiments, though it

ditions for large eddy simulation ES) of turbulent free may not be well justified physically. The advantages of peri-

shear flows. In the method, a time series of instantaneou@diC Poundary conditions are apparent. No external inputs
velocity planes from an auxiliary simulation is recycled re- are required, Fourier representation is applicable and statis-

peatedly to provide the inflow. They transform the time sig-ic8l Samples are improved. However, their homogeneity re-
nal into a periodic one using a windowing technique. Theduirement u;ually I.|m|ts them to simple geometries, such as
periodicity induced by the inflow takes 25% of their test rectangular isotropic _turbulence boxes, turbulent plane chan-
domain to die out. Adant& used a similar approach to pro- "€lS: and turbulent pipes. .
vide the inflow for his direct numerical simulatidgbNS) of A flat-plate _boundary Iayer und_er ZEro-pressure gradient
a turbulent compression ramp. Large-eddy simulatides) eyolves slowly in the streamwise direction anq Iaqks stream-
of supersonic compression-ramps by Rizzetal 2 and wise homogenelty. If tr_]e (_affect of the streamwuse inhomoge-
DNS of turbulent flow over a rectangular trailing edge by "€ty iS neglected, periodic boundary conditions may be ap-
Yao et al!® also use auxiliary simulations to generate turbu-p“ed’ Iegd!ng to a temporal behawor.o.f the.bounQary layer.
lence inflow. The specification of the inflow by superpositionThe majority of boundary Iaygr transition simulations used
of random fluctuations on mean flows is a straightforwardtej'mporf"1| apprpaphes and achieved notable success accompa-
procedure. This procedure is successful in the simulations dpied W'_th I|m_|tat|ons, see REf' 26.‘ ".1 _turbulent t_)oundary
spatially decaying compressible isotropic turbuleHo®ther layer simulations, streamwise periodicity may still be as-
implementations with varying degrees of success includéumed’ as we address below.
DNS of the spatial laminar-to-turbulent transitidand DNS
of a backward-facing ste}5. The shortcoming of the method
is the requirement of a fairly long development section due  The use of genuine periodic boundary conditions in the
to the lack of proper phase information and nonlinear energ¥DNS of a zero-pressure-gradient turbulent boundary layer is
transfer. Also, it is very hard to control the skin friction and to apply them in the streamwise direction, besides the span-
integral thickness at the end of the development sectionwise direction, without any change to the governing equa-
Klein et all’ develop a method for generating pseudoturbu-tions. As a result, the simulation is temporal instead of spa-
lent inflow. It provides some advantages over the classicaial and can be referred to as temporal DNS or TDNS. In
approach that uses random fluctuations. The method is basétkeory, TDNS leads to nonstationary flow with developing
on digital filtering of random data and is able to reproduce anean and decaying turbulence. Also, the wall-normal dis-
prescribed one-point second order statistics as well as autplacement in the freestream is prohibited. These aftereffects
correlation functions. can be illustrated in different ways. Here, we chose to show
The last category has the most straightforwardthe effects in the context of the turbulent kinetic energy.
approach®!® The computation of the spatially developing Taking the simulation domain as a control volutand
turbulent boundary layer starts far upstream, where a laminatenoting its surface aS, as shown in Fig. 2, we integrate the
profile plus disturbances is set up to allow a transition tocontinuity equation and have the following:
turbulence. No time-dependent inflow is required, but the J
cost is daunting. The approach is generally used to investi- _f pdV+ fﬁ pu;n;dS=0, )
gate transition itself, see Refs. 19-22. atly s

In the current paper, we present an examination of inflow,heren ; is the normal vector of the surface Starting from
boundary conditions for compressible turbulent boundarye continuity and momentum equations, we can deduce the

layers. We first discuss and analyze the use of periodiq;megra| equation for total kinetic enerdy (= 1pu;u;) as
boundary conditions toward temporal simulations. In this re-

gard, we introduce the genuine temporal direct numerical’
simulation (TDNS) and show the premises under which at VKdV+ ﬂ(qu—uiaij)nde

TDNS can be used to generate turbulent boundary layer data.

We then use the extended temporal direct numerical simula- _ p%kdv—f ddy, (2
tion (ETDNY) (Ref. 10 to assess the validity of TDNS. To v v

A. TDNS
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top domain boundary

inlet free stream outlet

wall—-normal (z) FIG. 2. Schematic of the control vol-
ume for analysis in TDNS.

boundary layer up & spanwise (y)

streamwise (x)

turbulent boundary layer

where gj; =2uS;; —%,uSkkéij is the stress tensop is the  tion in Egs.(4) and(6) represents a transfer mechanism be-
viscosity, §;; = 3(au; 19x;+ dujl dx;) is the rate-of-strain ten- tween internal energy and kinetic energy other than dissipa-
sor, and® is the dissipation. With symmetric boundary con- tion. The DNS data of Maedest al® at Mach 3, 4.5, and 6
ditions at the top boundary of the domain, no-slip and no-and Guariniet al?’ at Mach 2.5 indicate that the pressure
penetration boundary conditions at the wall and periodidilatation term is negative in the wall vicinity, resulting in a
boundary conditions in the streamwise and spanwise direaransfer of kinetic to internal energy. Away from the near-
tions, no wall-normal displacement at the top boundary fol-wall region, this term assumes a small positive value and it
lows Eq.(1) to conserve mass in the domain, and the secon@inally approaches zero at the edge of the boundary layer.
term in Eq.(2) thus vanishes for the zero-pressure-gradientrhe contribution of the pressure dilatation to the gain of total

boundary layer. Noticing that and turbulent kinetic energy is negligible compared with the
loss due to dissipatio® and ®; and the pressure dilatation
JVpSdeV= JV<pS<k>dV itself. The total kinetic energy and the mean kinetic energy in

domainV thus always decrease with time, which results in

the developing of the mean streamwise velocity and the
=(p) fﬁ&g(UO”deﬂL L(P'S&de thickening of the boundary layer, and leads to a decrease in

the turbulence production and the decay of the turbulence.

L Nevertheless, in practice TDNS with periodic boundary
- Jv<p S dV. 3 conditions may still be used to simulate turbulent boundary
) layer flow at a particular streamwise location. The necessary
We can rewrite Eq(2) as conditions are thati) the turbulence can be considered qua-
9 sisteady, i.e., it adjusts itself to local conditions much faster
P VKdV: L(p’%&d]/— L;I)dv, (4 than the mean profile develops; afit) for the purpose of

gathering statistics, the sampling time is shorter than the time
where(-) denotes a spatial average in a homogeneous plargzale of the mean profile development. A flow that satisfies
and a prime the fluctuation with respect to a spatial meanthese conditions evolves slowly and can be viewed as a good
With the same boundary conditions, the integral equationgpproximation of a stationary station of a boundary layer.
resembling Eq(4) for the mean and turbulent kinetic energy The necessity of the second condition is apparent. Oth-

are, respectively, erwise, correct statistics are inhibited as the mean flow
P changes apparently in a non-self-similar way. The first con-
e KndV=— J PdyV— j bmdV, (5)  dition ensures the second one. It is necessary to initialize the

v v V

flow field to nearly equilibrium for the realization of these
9 conditions. By nearly equilibrium here, we mean that the
= thv=J (p’S{k>dV+J PdV—J’ d.dy, (6)  terms that contribute to the evolution of the turbulent kinetic
v v v v energy are nearly balanced. If the initial flow field is far
where K.,,=3(p)UTl; is the mean kinetic energyK, away from equilibrium, TDNS may require a long temporal
=3(pu'ul’) is the turbulent kinetic energy? is turbulence transient process before it settles down to a quasistationary
production,®,, and®, are the mean and turbulence dissipa-status. Thus, without appropriate initial conditions we could
tion, respectively. We use a tilde to denote a mass-averagduardly control the skin friction and the boundary thickness at
mean and a double prime a fluctuation from a mass-averagdte end of the transient. Martihaddresses the procedure for
mean. the initialization of compressible turbulence at nearly equi-
Production? and dissipation®, ®,,, and ®, are all librium conditions. The practical validity and limitations of
non-negative within the boundary layer. The pressure dilataTDNS are illustrated in Sec. IV A1 using simulation data.

Downloaded 23 Jun 2004 to 128.112.36.40. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2626 Phys. Fluids, Vol. 16, No. 7, July 2004 S. Xu and M. P. Martin

. . ' : FIG. 3. Schematic of the domains for
E Station I ; Station 11 ‘ Station III ETDNS.
: : : : X
B. ETDNS est mean flow variation while long enough for turbulence to

Stationary mean flow and nondecaying turbulence calpe decorrelatgd asin TDNS. In contrast to the simulation by
Maeder et al,” our simulation presented later relaxes the

be achieved through the addition of forcing to the basic ¢ tisfy the latter. The dist betw iahbori
equations. Realizing the fact that both the boundary IayefOrmer 0 satisfy the latter. The distance between neighboring

thickness and the energy level of the turbulence vary slowl tations also has gontradlctory req.uwements. It should be
as functions of the streamwise location, Spatral”® in- ong enough to avoid overlap of stations but short enough to
troduced a new wall-normal coordinate,and then applied chieve the accuracy of the forcing calculation. At the first

multiple-scale procedure to approximate the slow streamwis W stations, the information about the mean flow develop-

growth of the boundary layer. The final product is a set ofment from previous stations is either missing or inaccurate,
small forcing terms that are added to the Navier—Stoke§auSing a nonphysical spatial transient. We have the same

equations. They used the technique and successfully simgXperience as Maedet al.” that the solution can be marched

lated an incompressible turbulent boundary layer at differengownStream after the temporal transient has settled down ap-

streamwise stations. Guariat al?’ extended the technique prec_ll_z;bly, devent beforef EE_T_tStI\'IOSnary SI’Et$tI§I\IISS rearc]:_hed. ¢
to compressible turbulent boundary layer simulations. € advantages o aty achieves sta-

Maederet al® further developed the procedure by Spal- tionary flow behgvi_c_)r, i.e., the mean profile keeps and the
art etal,”® and proposed an extended temporal DNSturbernce sustamQu) the march!ng process allows ETDNS
(ETDNS) approach in which na priori assumptions about to smulate a series of s.trearer|se stations qf a spatlglly de-
the mean flow are required ETDNS computes a flow at a/gloplng boqndary layer; andi) ETDNS requires na pri-
series of streamwise stations, as seen in Fig. 3, allowing th i assumptions about the 7”333” ﬂOW'_ But, like TDNS and
spatial mean flow evolution to be approximated from its up-t € approach by Spalaet al.”” ETDNS is a temporal tech-
stream history. When a sufficiently stationary state is reached'd4€ N nature and a turbulent eddy does not march from
at a station, the computational box can be marched dowr2N€ station to another.
stream another spatial step. In ETDNS, the forcing is derive
from the spatial evolution history of the mean flow such tha?”' RESCALING METHODS
the parabolized Navier—Stokes equations are recovered, Temporal approaches, such as TDNS and ETDNS, are
which is solved locally in time by DNS. Both the mean flow efficient and useful in turbulent boundary layer simulations.
nonparallelism and its interaction with local fluctuations areHowever, they have both physical and numerical limitations.
accounted for in the forcing. For the mathematical derivationThe bridges connecting temporal and spatial simulations
of the forcing, we refer to Ref. 6. through Taylor’s hypothesis for supersonic and hypersonic

There are two remarks worth mentioning for the imple-turbulent boundary layers are broken due to their high com-
mentation of ETDNS. One is about the geometric set-up of gressibility, high turbulence intensities, large mean shear, and
simulation. The other regards the forcing at the first statiorlarge viscous effect® Many simulations directly resort to
where no upstream history exists, see Fig. 3. The streamwisspatial approaches. For example, to numerically investigate
extent of the domain should be small enough to ensure modhe shockwave/turbulent-boundary-layer interaction over a

Rescaling
l(1) (12) (3[) &
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compression ramp, an inflow—outflow spatial simulation carthe governing equations and describes very well the relation
not be evaded. Still, good inflow generation techniques arbetween mean temperature and mean streamwise velocity for
desired for this kind of spatial simulations. An auxiliary tem- zero-pressure-gradient boundary layers, see Ref. 30. Inspired
poral simulation can be used as an inflow generatiorby the Walz’s equation, our method assumes a more general
device®>%1°however there are constraints regarding compuxelationship, which may be extended to nonzero-pressure
tational cost, inflow time periodicity and the control of in- gradient cases. To rescale the temperature fluctuations, we
flow characteristics. An efficient and accurate way to inte-also assume relations between the temperature fluctuations
grate the inflow generation and the main spatial simulation isind the velocity fluctuations, including amplitude and phase
highly desirable. relations. In this regard, our method is inspired by the strong
Based on scaling laws of incompressible turbulentReynolds analogySRA). However, we should emphasize
boundary layers, Lunét al> proposed a rescaling method to that the Walz's equation and the SRA are not used in our
generate turbulent inflow for simulations of spatially devel-method. The method that is presented below is more general
oping incompressible turbulent boundary layers. The methoih this sense.
rescales the velocity field at a downstream station and then Due to the presence of multiple length scales in a turbu-
recycles the rescaled velocity field to the inlet, see Fig. 4lent boundary layer, we must treat the rescaling process in a
Compressible extensions of this method have been devepiecemeal fashion. To rescale the mean streamwise velocity,
oped by Urbinet al?® and Stolz and Adan?. we follow Ref. 30 and distinguish the viscous sublayer, the
The difficulties in the compressible case are that thredogarithmic region and the law-of-the-wake region in the
extra thermodynamic variables, i.e., temperature, densitjpoundary layer. To rescale the mean wall-normal velocity
and pressure, must be rescaled and the velocity field and tt&nd turbulence, we divide the boundary layer into the inner
temperature field are coupled. The methods by Uetial?®  layer and outer layer. The implementation of the piecemeal
and Stolz and Adam®$ overcome the difficulties by assum- procedure is described in Sec. Ill D. Hereafter, we denote the
ing that all mean and fluctuating thermodynamics variablestreamwise, spanwise and wall-normal coordinates, gsz
are scaled in the same way as the wall-normal velocityrespectively, with the corresponding velocity components as
which is not justified physically. The scaling of the trans-u(=U+u’), v(=V+v') andw(=W+w'), where a capi-
formed streamwise velocity holds in the method by Urbintal letter represents a mean and a lowercase letter with prime
et al. However, it is inconsistent with the scaling of the meanrepresents a fluctuation. We denote the recycled downstream
temperature and density. Stolz and Adams assume that tisgation as (), and the inlet (); .
mean density scaled with the freestream value is self-similar
in the inner and outer layers. With this assumption theirA. Mean rescaling

method degenerates the scaling laws for the transformed For a flat-plate boundary layer, the mean spanwise ve-

mean v%eéllgglty into those of the incompressible case. Both,iy v/ is zero due to the spanwise statistical symmetry, and
method may work numerically for a zero-pressure- \he mean pressure is equal to the freestream value. Thus,
gradient boundary layer when the recycling station is close tPhe remaining mean variables to be rescaled are the mean

the |nlet. Our qpproach is different in that it employs MOregtreamwise velocity, the mean wall-normal velocity, the
consistent scalings for all the mean and fluctuating thermop,o4n temperatur, and the mean densify.

dynamic variables. The main assumptions in the method that
is presented here are Morkovin's hypothé&$isnd general-
ized temperature-velocity relationships, which are well justi-1. Mean streamwise velocity

fied both theoretically and experimentally. i ) .
Morkovin's hypothesi& states that the turbulent time In the viscous sublayer, the viscous shear stress is much

scale in a boundary layer is independent of Mach numbef@9€r than the Reynolds shear stress and is assumed equal to
Thus, the effects of Mach number are passive to the dynantl® Skin friction. Taking the effect of the temperature-
ics of the turbulent boundary layer, and only affect the varia-dePendence of the viscosity, we have
tion of the fluid properties. The validity of Morkovin’s hy- us
pothesis is the reason why van Driest's mean-flow scaling is u_:Z+’ (7)
successful. Following Morkovin's scaling, we rescale the ve- 7
locity field taking into account the density variation acrosswhere u.=(»(dU/dz)),, is the friction velocity, z*
the boundary layer and using the ratio of local density to wall=U-z/vy, is the wall-normal coordinate in viscous length
density p/p,,, with an overbar denoting averaging in time unit, andUs is the transformed mean streamwise velocity in
andw indicating a wall quantity. the sublayer defined by

Across a boundary layer, the mean pressure is the same u/ T\n
as the freestream, and the state equation for perfect gas indi- US:f (T—) du, (8
cates that the mean density variation is equivalent to the w
mean temperature variation. Thus, the temperature and the which T is the mean temperature and the variation of the
velocity are coupled in the rescaling procedure. We thereforgiscosity with temperature is given by a power law
look for a relation between the mean temperature and the N
mean velocity for the velocity scaling. Walz's equati@hso K _( T ) _ 9)

0

called modified Crocco relatigris an analytical result from HMow
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From here on we use the subscriptandi to refer to the when (),=(%);, ie., @,=(2)il/ws, wWhere w,
variables at the recycle and inflow conditions, respectively=(A);/(A), .
When ¢*),=(z");, i.e.,

2. Mean wall-normal velocity

. w
(z)rzﬁ (’/L)r(z)i =i(z)i , (10) From the mean continuity equation, we can approximate
(U (v Wy, W as
in which 1 (zdpU
W=—-—=| —dz (19
R an plo o
YUt T ()] We estimate the order afpU/dx to be (p/x)\(pw/p)Uu, .

The order of W then is @/x)\(pw/p)u,. So we take

we can compute the transformed velodity at the inlet from = )
V(pw/p)u, to be the scale fow. In the inner and the outer

(U9)i=wy (U?),. (12 layers of the boundary layew is assumed to be scaled as
In the logarithmic region(also called inertial sublaygrthe W /F_f N 20
distancez is assumed to be the only relevant length scale. It u_ Vp,,~ innedZ"), (20)

can be taken as the mixing length in Prandt's mixing length
theory after multiplying a constat A logarithmic law is V_V\/j——:f (7) 21)
obtained by using either Prandt’s mixing length theory or just U, PLPw™= Toutel 77):

a scale analysis. The effect of density variation is embOdieq\/here functionsf

) . o inner and are assumed to be indepen-
in the velocity scale. The logarithmic law reads mnet outer P

dent of streamwise locatian The scaling oW above is not

u** 1 justified physically. HowevenW is very small relative tdJ
Tk Inz"+C, (13 and is not a dynamically dominant quantity. Thus, a rigorous
T treatment ofW can be relaxed.
whereC is a constantJ** is the van Driest transformed Applied at the recycling station and the inlet, the scaling
velocity which is defined by of W leads to
u Ty (p)r
U** =fo TdU (14 (W)i:wuprw W(W)r’ (22

In our scaling method for inflow generation, the above formfor (z*);=(z"); in the inner layer and )= (7); in the
of the law in the logarithmic region is not needed. We onlyOuter layer.w,, is given by
need to use the following self-similar expression:

*% w, = (E_W)I (23)
U + Pw (pwr
u :flog(z )s (15
. . . 3. M t Il
wheref,y, is assumed to be a universal function, see Ref. 30. ean tempera L{re ] )
So when ¢*),=(z");, we have ~ When fluctuations are small, to a first-order approxima-
tion, the mean temperature and the mean density are
(U*)i=w, (U*),. (16)  related by the state equatidn= P/Rp for perfect gas, where

In the outer layer of a compressible boundary layer, the dif—R Is the gas constant Thus, the rescaling dbllows that of
ferent similarity law ' the mean temperaturgis known. _
The mean temperature appears in the transformed mean
UX* —U** 7 streamwise velocitie®)®, U** | andU*. Thus, we need a
=fwad ), 7= 3 (17)  relationship to decouple the mean streamwise velocity and
the mean temperature and to produce the rescalifigrothe

applies, wherd . is assumed to be independent of stream-process of rescaling. For a zero-pressure-gradient bound-
wise locationx, U, is the freestream velocity, anl is an  ary layer, Walz’s equation is such a relation and is given by
integral reference length taken to be the momentum thick- 2

. : o T T, T,-T,(U y—1 U
nessé in our rescaling. As the expression indicates, the law = Y _) —rL—m? _) , (24)
is named as the velocity-defect law or the law-of-the-wake. It Te Te Te 1Ue 2 “\Ue

is well supported by a large number of experiments in zerowhereT, is the recovery temperature, subscephdicates a
pressure-gradient boundary layers. From scaling schemfeestream quantity, is the freestream Mach numberjs

u

T

(17), we can obtain the ratio of specific heats, ardis the recovery factor. The
(U*);=w, (U*),, recovery tgm_peratur‘ér and the recovery factarare related
T by the definition of the recovery factor as
Ve TW -1
U*:Ug*—U**:fU V= au. (18) Tr=Te(1+rTM§). (25)
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For an adiabatic wallT,,=T, and T, is calculated by Eq. the relation between the temperature fluctuations and the
(25). For an isothermal wallT,, is given andT, is still cal-  streamwise velocity fluctuations and is given by

culated by Eq.(25). So Walz's equation tells us that the

relation between the mean temperature and the mean stream- _™_ ,,_ 1)\ Urms

wise velocity is dependent of the streamwise location only T cuU

throughT,, or say the recovery factar Experimental data T

indicate thatr changes little along a boundary layer. Thus, Ry =—=—=—1, (30)
takingr to be the same at the recycling station and the inlet UrmsT rms

is a good assumption. In turn, Walz's equation is the same 8hereT,,, andu,, are, respectively, the root mean squared

the two stations. We may generalize the argument by assungemperature and velocity fluctuations. From the SRA, we can
ing that the relationship between the mean temperature argtedictT’ as

the mean streamwise velocity is independent of the stream-

!

wise location, as expressed b , u
P y T'=—(y-DMZIGT. (3D)
T U
T_:fUT 0. (260  The SRA is not well supported by simulation data even at
e e

low Mach numbers, see Refs. 6 and 27. In contrast, experi-
wheref 1 is a function ofz" in the inner layer and; in the mental data shows that SRA is well supported for low to
outer layer, and it is not a function of the streamwise loca-moderate Mach numbers, see Refs. 30—-34. We can avoid the
tion. Note that for a boundary layer under a nonzero pressuréncertainty of this assumption in the same way as we deal
gradient, Eq.(26) may not take the same form as Walz’s With the relationship between the mean temperature and the
equation. However, the analytic form of this equation is notmean streamwise velocity. We assume the following rela-
needed for the rescaling method. We can obtain the relatiorfions which are more general than the SRA,

ship numerically at the recycling station and then use inter- T u T'(t) U’ (t+ F gpacd

polation to decouple the mean streamwise velocity and the —=f, " =c phas
mean temperature at the inlet. The valuedJadre obtained T U
from U®, U**, andU*. To computeU® andU** , we start  wheret denotes timeg is equal to+1 (or —1), whereu’ and
the integration from the wall, where the conditions areT’ are positively(or negatively correlated,f amp and f phase
known. To computeJ*, we start the integration from the are functions oz " in the inner layer and; in the outer layer,

: (32

Trms urms

freestream, where the conditions are also known. and they are not functions of the streamwise location. Apply-
ing Eq. (32) to the recycling station and the inlet, we can
B. Turbulence rescaling deduce
The scgling s.ug.gested by Morkovin_ to account for the , (U (t+ Fpnasd)i (U, (T
mean-density variation appears appropriate to at least Mach (T (t))‘:(u’(t+f Y, ) ™M (T"(t)),
5. When the velocity fluctuations are normalized by the ve- phase /r P
locity scale+/(py/p)u., they are in fair agreement with the (p); (U), (),
incompressible data. Applied at the recycling station and the =wy ®, NI (T"(V), . (33
! e data. 7 Ing station & (i (U); (T),
inlet, the scaling ofi/ (i=1,2,3 corresponding to’,v",w")
by \(pw/p)u., leads to Approaching the wall, ¢),/(U); becomes a 0/0 type limit
and can be evaluated according to L'Hospital rule. We thus
, (p), ) have the following rescaling of the temperature fluctuations
(U)i= oy 0, ﬁ(“i ey 27 at the wall:
for (z"),=(z"); in the inner layer and %),=(7); in the (T,(t)):“’PW“’VW (P)r (Tw)i (T1(0) (34
outer layer. The difficulty is how to rescale the temperature, N @y (p)i (Ty)y W70

density, and pressure fluctuations.

To a first-order approximation, the state equation y|eldsC. Rescaling parameters

p/ —T/

P p_' 28) To compute rescaling parametess, we needu,, v,

P T p° A (in our casef) andp,, at both the recycling station and the
inlet. At the recycling station, these quantities are known. At

In most casesp’/P is very small and can be assumed to bethe inlet, (v,); and (p,); can be found directly from the

negligible, which gives mean wall temperatureT(,);, 6 can be specified and, is
, , given as a function of using the Karman—Schoenherr equa-
p T ' . .
==-=. (29)  tion under van Driest Il transformation, see Ref. 23.
P

This approximation is good for turbulent boundary IayersD' Implementation

only. Thus, only the temperature fluctuations need to be res- In the rescaling of the mean streamwise velocity, three
caled. The strong Reynolds analo@RA) serves to predict sublayers are distinguished. In the rescaling of other quanti-
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y j D two weights satisfyingw;>0, w,>0, w;>w,, and w;

+w,=1. Lundet al® let w; be 1— (At/7) andw, be At/r,
whereAt is the computational time step ardhe character-
istic time scale of the averaging interval. From form(38),
we know

UMD =W U O+ wy(wi(u®)y, +wi™Hu?@),

+ee (UMDY ), (40)

At the beginning of the simulation, becauseis small and
w;>w,, U© takes a very large fraction (M%), as seen
FIG. 5. Weight functions used in the simulation. from Eq.(40). Thus, we provide a smooth mean profile from
TDNS asU(© instead of usingu(®),. We choosew; so
that when the mean information has propagated from the
dnlet to the recycling stationm is large enough fot)( to
take almost no effect i1, After the transient, we in-

ties, the boundary layer is divided into the inner sublayer an

the outer sublayer. The composite profile of a quantity ove ) a B
creasen, to run forN steps in order to stabilize the statistics

the entire boundary layer is formed by a weighted combina : . _
and then switch to a usual running average, ive,=1

tion of the profiles for all sublayers. For example, the streamS ;
wise velocity is formed as —[1/(N+m—mg)] and w,=1/(N+m—mg), wheremy is

the step at which the running average begin&) @ is very
U={U,iscb1(2) + Uogb2(2) + Upakdda(2)} crude andw; is not well attuned, the temporal starting tran-
/ _ , sient can be very long before the right spatial behavior builds
{Uinel 1 Pa(2) ] UouePa(2)}, (35 up over the boundary layer. ¥, is too small, a good mean
whereU sc, Ujoq, andU e represent the mean profiles in profile U(M*Y) can not be achieved due to insufficiency of
the viscous sublayer, the logarithmic region and the wakeffective samples for averaging, which leads to wrong scal-
region respectively;, o andug e, in turn represent the fluc- ing and thus wrong boundary layer mean behavior.
tuation profiles in the inner layer and the outer layer, and If the initial flow field is crude, the rescaling parameters
b1(z), by(z), andbs(z) are weight functions. The weight u, and @ that are specified at the inlet can largely differ from
functions are constructed from hyperbolic-tangent functionshose calculated at the recycling station initially. The mean
as streamwise velocity rescaled by the law-of-the-wall thus has
x a large shift from the one rescaled by the-law-of-the-wake.
rl—tam{clﬁ“, (36)  When the mean profile of the streamwise velocity is formed
logs™ Pvisc by the weight functions, there appears an undershoot or over-
rt |‘{ k— kml
an Clklogs_ kvisc

by (k)=

Nl N

k—k shoot in the profile. We call the start of a simulation with the
m23 R i
—tanhcog——— undershoot or overshoot a jump start. It takes a long time to
I(wake klog?
3

by(k) =
smooth the undershoot or overshoot and build up the right
mean behavior over the whole boundary layer. A trick to
] 39) avoid this is to let the initiali. and 6 at the recycling station

' be the same as those specified at the inlet, and then use the
averaging formulg39) to bring their right values at the re-
cycling station slowly in the temporal transient of the simu-
Tation. In this way, the simulation starts smoothly. After the
initial transient, the averaging formu(&9) is discarded and

u, and 6 at the recycling station are calculated directly from
the mean profile.

1 K—Kmos
bsy(k)==i1+tanhcog——
3( ) 2 { ’{ 23kwake_ I(Ioge

wherek is the wall-normal grid index and equivalent to co-
ordinatez, ¢;, andc,3 are constants to adjust the steepnes
of the weight functionskyisc, Kiogs: Kioge: @andkiyaxe are the
wall-normal indexes to distinguish different sublayeks,
= (Kyisct Kioge /2 and Kip3= (Kjoge Kwakg /2. In the simula-
tion presented in the next section, we chodsg., Kiogs,
Kioge: @ndKyake to correspond t@* =5, z" =30, 2/6=0.2,
andz/6=0.5, respectively. Figure 5 shows the weight func-, tesTs
tions we used in the simulation. These parameters are chosen
based on the simulation conditions during runtime. We find In this section, we simulate a supersonic turbulent
that these parameters are insensitive to the small changbsundary layer under zero pressure gradient. The perfect gas
around the initially chosen values. assumption is used and the specific heatsandc,, are

In the mean scaling, a time average is needed to excludassumed constants. The dynamic viscogitjs assumed to
the starting transient if the flow is initialized with a crude obey a power law. We first present the comparisons between
guess. In that case, the following formula is used: TDNS and ETDNS. We check the conditions for the validity

of TDNS and point out the improvement over TDNS by

U(mH):Wlu(m)+wz<u(m+l)>y’ (39 ETDNS. We then present the results of a spatial DNS
whereU(M*D andU(™ are the time-averaged mean at time (SDNS in which the rescaling method is implemented. The
stepm+1 andm, respectively(u(m“))y is the average aofi numerical results are compared with theoretical ones and
in the spanwise direction at time step+1, w; andw, are  those from TDNS and ETDNS.
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TABLE I. Parameters for TDNS and ETDNS. Re pUeth /i - DstarioniS the distance between two neighboring
stations in ETDNS. Other symbols take their usual meaning.

Initial flow conditions M, Te (K) pe (kgim®  10°6, (m)  10°6% (m)  10%6, (M)
4 5000 0.5 6.96 2.87 3.94
Reﬁo U, (M/9 10°Cyo
11363 243 0.96
Numerical set-up Ly Ly L, Ny Ny N,
6.105,  1.525 10.305, 384 128 128
Ax* AyJr Az* dstation
12.7 9.5 0.11-535 2,

We run ETDNS until a stationary station is reached andyoverning equations, whetg stands for the vector of con-
then take the final flow field as the initial condition to run servative variables antl, a given steady basic flow. Be-
TDNS and ETDNS. Therefore, the initial flow parameterscause the recycling station is close to the sponge layer, we let
and numerical set-up are exactly the same. These are givésy be the mean flow at the recycling station to reduce the
in Table I. To save run time, a coarse spanwise mesh is usattificial effects from the outflow treatment on the recycling
for the comparisons between TDNS and ETDNS in Secstation. Following Israeliet al,* the Newtonian cooling
IV A. The initial flow field for SDNS is from a quasistation- function o(x) is chosen to be
ary TDNS with a fine spanwise mesh. The initial flow pa- N
rameters and numerical set-up of S iven i _ (X=Xg)"(Lx—=X)

p of SDNS are giveninTable Il.  4(x)= AN+ 1)(N+2) - (41)
We emphasize that all results in Sec. IV B for the rescaling (Lx=Xs)
method are obtained with the fine spanwise mesh. For th@here A4 and\ are two adjustable parameters chosen to be 4
resolution and domain assessments, we refer to Ref. 28. and 3, respectively, is the streamwise location where the

The computational codes for TDNS, ETDNS, and SDNSsponge layer starts given in Table Il, ahd is the stream-
are essentially the same and are described in Ref. 28. Theggse length of the computational domain.
employ a third-order shock-capturing weighted essentially
nonoscillatory (WENO) scheme for the inviscid fluxes, a A. Comparisons between TDNS and ETDNS

fourth-order central-finite-difference scheme for viscous . L
fluxes and a second, order accurate data-parallel lower-upper The purpose of this section is to show that TDNS can be

(DPLU) relaxation method for the time advancement. Theused to generate supersonic turbulent boundary data as long

extra forcing terms for ETDNS are treated explicitly. The as the specific conditions for its validity, which are listed in

marching scheme in ETDNS that is used to approximate det_he second to last paragraph of Sec. Il B, are satisfied. Here,

rivatives on the slow streamwise scale is a second-ordel® YS€ the results from ETDNS to test the validity of TDNS.
backward finite difference scheme. No-slip and no- .

penetration conditions for velocity and an adiabatic condition?: Mean behavior

for temperature are used at the lower wall. Symmetric  The theoretical analysis in Sec. Il A shows that TDNS
boundary conditions are used at the top domain boundary. lleads to nonstationary flow. However, in practice the flow
SDNS, we generate the inflow using the rescaling methodevolves slowly. Thus, if the time interval for averaging is
The location of the recycling station is given in Table 1l. We much shorter than the time scale of the flow evolution, then
treat the outflow by placing a sponge la§/&before the out- the flow can be considered quasistationary and time averag-
flow boundary and applying symmetric boundary conditionsing can be used to obtain statistics. We verify that the TDNS
at the outflow boundary. In the sponge layer, a vector quanflow evolution is slow by monitoring the temporal evolution
tity Z=—o(x)(U—Uy) is added to the right-hand side of the of the friction velocity, momentum thickness and displace-

TABLE II. Parameters for SDN;, is the streamwise location of the recycling statimpis the streamwise
location where the sponge layer starts.

Initial flow conditions Mg T. (K) pe (kgim®  10°6, (m)  10°6% (m)  10%6, (M)
4 5000 0.5 7.44 3.28 4.11
Reﬁo U, (M/9 10°Cyo
11742 255 1.01
Numerical set-up Ly Ly L, Ny Ny N,
5715,  1.435 9.645, 384 256 128
Ax*t Ay* Az* Xy Xs
12.7 48 0.12-565 4% 5.08,
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FIG. 6. Temporal evolution of the friction velocity and the momentum

thickness for ETDNS—) and TDNS(---).
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Figure 6 shows the time history of friction velocity and
momentum thickness for TDNS and ETDNS. In TDNS, the
evolution of the skin friction is slow. The long-time temporal
evolution of the friction velocity is not obvious in Fig. 6.
However, we may expect that, decreases as we continue
the simulation much longer. The boundary layer thickening
with time in TDNS indicates that the use of genuine periodic
boundary conditions does lead to the temporal behavior of
the mean flow. In ETDNS, as expected, this temporal evolu-
tion is prohibited by the forcing, and the skin friction and the
integral thickness evolve little with time.

Estimating the time scale of the boundary layer growth
as

&t 42
leads toty=25 (65/u.o) in TDNS for the duration shown in

Fig. 6. We find that quasistationary statistics can be gathered
in a time-period that is one order of magnitude smaller than

RECAN

4 l
3 .
2F NJIT, T
1 L
U/U,
05 i 2
(a) z/O*

ment thickness and verifying that the change in these quan-
tities is negligible in the time period where the statistics are

gathered. In this case, we consider that the variation of these
quantities in 34 /u ¢ is nearly negligible, wheré; andu.

are the displacement thickness and friction velocity at the

beginning of the simulation.

0.03 . . , :
0.02 '
0.01

0

-0.01F \

N / ! T 1
-0.02} 1 0 0.5
. . . . b 8748}
-0.03 o T 75 (b) e

FIG. 7. Mean streamwise momentum balance in ETDNS withu)/dt

(—), (fu) (=), (d(puw)/9z) (—--), andd(7,)/dz (—-).

FIG. 8. Mean streamwise velocity and temperat@ecomparison between
TDNS and ETDNS;(b) comparison with Walz's equation for=0.9.
ETDNS: —, TDNS: ---, and Walz's equation:-—.
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-0.0015 0.5 1 -25 550 500 750 1000 and ETDNS for (@—(b) Reynolds
/8 z stresses(c)—(d) Reynolds heat fluxes.
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the boundary later growth time. The total sampling time forWalz’s equation predicts very well the relationship between
the current TDNS is about 355/u.o). The boundary layer the mean streamwise velocity and the mean temperature for
in TDNS can be considered quasisteady if the flow adjusts tthe conditions chosen, and it can be used instead in the
its local conditions much faster than the boundary layerescaling method for zero-pressure-gradient supersonic tur-
growth. The adjusting time is of the order of the large-eddy-bulent boundary layers.
turn-over time 63/U., which is much smaller than the
growth time. Thus, the conditions for the validity of TDNS o
are satisfied in the present simulation. Further comparisong urbulence statistics
between TDNS and ETDNS also validate the use of TDNS.  The Reynolds stresses and the Reynolds heat fluxes are
In ETDNS, the mean streamwise momentum balance i€ompared between TDNS and ETDNS in Fig. 9. Primes are
used to denote fluctuations with respect to the Reynolds-
pu) Hpuw) I 7yy) fati ; .
S + +(fy), (43) averaged mean. Due to the statistical symmetry in the span
Jt 9z 9z wise direction, the Reynolds shear stregse’s’ andpv’'w’
where the terms at the right-hand side represent advectioand the Reynolds heat flpe ' T’ converge to zero, and they
diffusion, and forcing. Figure 7 shows these terms normalare not shown in Fig. 9. To observe the different temporal
ized with the freestream momentysgU. and the large-eddy behavior of these quantities, we nondimensionalize them by
turn-over timed/U,. From Fig. 7 we see that the time de- the freestream parameters, i.., U, andT,. As seen in
rivative of the mean streamwise momentum remains small ifrig. 9, the magnitude of each Reynolds stress component in
the boundary layer, with a maximum magnitude of less tharTDNS is slightly smaller than the corresponding one in
0.5%. Figure 7 also shows that the advection and diffusiofETDNS. The statistics resulting from long-time-averaging a
are dominant in the viscous sublayer and they nearly balancdowly decaying flow would have smaller amplitude than
each other. Outside the viscous sublayer, the diffusion is verthose of ETDNS. This is why the magnitudes of the TDNS
small, in turn the forcing and advection terms balance eachtatistics are slightly smaller than those for the ETDNS in
other. Fig. 9. However, the difference is very small, and we con-
The profiles of the mean streamwise velocity and thesider the agreement to be good enough to draw our conclu-
mean temperature are compared in Fi@).8A mean quan- sion of the validity of TDNS. Scaled with wall parameters,
tity here is obtained by averaging in both space and timei.e., p,,, u,, andT_. (T,=T,, for an adiabatic wall and .
The difference between TDNS and ETDNS is small for each=P,,,q,,/p,C,u, for an isothermal wall, wher®,,, is the
of these quantities. Figurel® plots the mean temperature vs Prandtl number and,, the heat diffusion flux at the wall
the mean streamwise velocity and compare the resulting prawe can still observe the similar difference for these quanti-
files with the one by Walz’'s equation. It can be seen thaties, which may indicate that the turbulence in TDNS evolves
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FIG. 11. Comparison of the TKE budget in TDNS and ETDNS. ETDNS: —
and TDNS: ---.

where a quantity with a tilde is a mass-averaged mean. The
terms in Eq.(44) follow the usual interpretations. Figure 11
gives the comparison of the TKE budget nondimensionalized
by wall parameters between TDNS and ETDNS. Again, a
small difference exists and the reason for the difference is the
same as in Fig. 9.

B. SDNS

The rescaling method results in a spatial boundary layer.
Figure 12 shows the spatial evolution of the boundary layer
displacement thicknes8*, momentum thickness, friction
velocity u, and friction coefficienCs . The rescaling method
builds up the spatial boundary layer from the initial periodic
flow field after the temporal transient is passed. The solid
circles represent the time-averaged spatial distributions of
these quantities for the spatial boundary layer in equilibrium.
The time average period is Bd/u .. As seen from Fig. 13,
the specified inlet friction velocity is about 8% larger than

0 1 the mean friction velocity of the initial flow field while the
0 0.5 1 momentum thickness is the same, which makes the described
(b) z/® trick (Sec. 1l D) necessary to avoid a jump start. Figure 13

shows the spatial evolution of the shape factbr,in com-
FIG. 10. (a) Amplitude and(b) phase relationship between temperature parison with Coles empirical correlatihand experimental
fluctuations and streamwise velocity fluctuations. ETDNS: — and TDNS'data‘?ﬂ For this figure onIy,é* and 6 are Computed using the
incompressible formulas and Be psusdlw,,, where w,, is
in a non-self-similar way. The same phenomena are aIque viscosity at the wall. Figure 13 shows that the SDNS data

found for root mean squared fluctuating velocities, tempera@'© Within the experimental uncertainty. Experiments show

ture and total temperature. Nevertheless, the difference in thtg"’ll(tj the shgpegofac;]tor IS not con?teLnt, iSpeC'f”y at(;ow Rey-

current and later comparisons between TDNS and ETDNS jg0/ds numbers. The accuracy of the shape factor decay is

very small, which means the use of TDNS is valid difficult to assess given the small range ofsRihat we con-
The SRA predicts the relation between the temperaturé'dered'

fluctuations and the streamwise velocity fluctuations as in. Thrtlare are nohexper|mental resullats atdthe pr:esent Eo_nd"
Eq. (30). From the SRA, we Knowr U/ (y—1)M2T e tions, however, the maximum error based on the van Driest

=1 and —-R,p=1. Figure 10 plots T,JU/(y Il theory in the skin friction is 7% for the SDNS data, as we
’ = . rms' .
_ 1)M§Turms ané— R, 1 vs2/6 and indicates that the SRA show below. Hopkins and Inou§/?epresented a survey com-

is not satisfied in the bulk of the boundary layer simulated byparing different theories to predict the turbulent skin friction
both TDNS and ETDNS in supersonic and hypersonic boundary layers. They found

After assuming homogeneity of turbulence in thethat the van Driest Il theory gives the best prediction. This

streamwise and spanwise directions, the turbulent kinetic erp_redmtlon is widely apcepted by experlmentqllsts N super-
ergy (TKE) budget equation reads sonics and hypersonics. Below, we summarize this theory

and show that the SDNS data is in very good agreement with
Jd o d o this well-established theory.
at ek +W5 (p)k) =P+ T+ 1L+ g+ D=2+, Sivells and Payne formutaunder van Driest Il transfor-

(44) mation reads
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FIG. 12. Distributions of the displacement thickne$s momentum thicknes$, friction velocity u., and friction coefficientC; along the streamwise
direction. SDNS®; initial periodic flow field: ---; and formulas from least squdteS) minimization: —. The variables are nondimensionalized by the initial

ones for the SDNS.

0.08§lg(F, Re,)—2.3684 where C; is the local skin friction coefficient, Re

“" [lg(FxRe)—15°

(45 (=peUex/ue) is Reynolds number based on distance to the
virtual origin of the boundary layer, Bés Reynolds number

_ 0.044, Re, based on the momentum thickness as defined in Table I. For
Fo Re49_[|g(|:x Re)—1.5%" (46) a given Rg, we computeC; from the estimation by
Karman—Schoenherr equation under van Driest |l
transformatiorf> After C; is calculated, we compute Re
1.7 from Eq. (45. Karman-Schoenherr equation under van
- = — — Coles (1962) Driest Il transformation reads
. SDNS
- ° Fernholz & Finley
1.6 i © Fomholz & Finley —=17.0810(F ,Re,) I+ 25 111gF ,Re,) + 6.012.
= Femholz & Finley o a7
° - Fernholz & Finley
1.5 \\ F., Fy, andF, are van Driest Il transformation functions
m \\c computed as
v 2
14} Ny 0.2Mg
\OOOV“ = A T
§ Sg\; Fe (sin ta+sin 1B)%’ (48)
s
13 = Fo=t2, (49
Mw
12 : ' : Fy
10° 10° 10* 10° 10° F=g (50
R352 wherer is recovery factor and and 8 are calculated by
FIG. 13. Variation of shape facté# with Reynolds number in comparison 2A2—B
with experimental datéRef. 12 and the empirical correlation of Colé€Ref. a= —, (51)
6). Here, the variables are computed using the incompressible formulas. \/4A2+ B?
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FIG. 14. Distribution of Rg along the streamwise direction. SDN®;
estimation by Eqs(45) and (47): ——; and formula from least squatkeS)
minimization: —.

B > (52)
with

A 0.2M3 -

o E (53
1+0.2M2-F
B=————, (54
F
Tw

F= T (55
Figure 14 shows that the streamwise evolution of, Rem
the simulation is in excellent agreement with that one given
by Eqgs.(45) and(47). Knowing u,, we calculate Reat the _
inlet from Eq.(45) and obtain data correspondence in SDNS 1 I A
between Rgand Reg. We then use the least squaileS) 0 0.5 1
minimization to produce a formula similar to E@6). The (b) U/U

[<]

solid line in Fig. 14 represents the plot from the LS minimi-
zation. Its slope matches very well the slope estimated byiG. 16. Mean streamwise velocity and temperat{@edistributions, (b)
Eq. (46). For comparison, we have shifted the virtual origin comparison with Walz's equation for=0.9. Station 1: —; Station 2: ---;
of the boundary layer to the boundary layer inlet. The rela-Station 3: —; and Walz's equation:- —.
tive magnitude difference between the LS results and the
predictions given by Eq(46) is less than 2% for the LS
fitted data(less than 5% for the data without LS)fitin
Fig. 12, the LS results fo#é distribution are given by a solid
line.

Figure 15 compares the simulated local skin frict@n
in terms of Rg with the estimation by Eq47). The dashed—
dotted line represents the estimation, solid circles denot

time-averaged values from the spatial simulation. The solid
line represents the results of the LS minimization which uses
SDNS data to produce a formula similar to Eg7). We
observe that the result from the simulation is in good agree-
ment with the estimation. The relative magnitude difference
Between the LS results and the predictions given by(&g.

is about 3.3% for the LS fitted datkess than 7% for the data
without LS fit).

Figure 16a) shows the mean streamwise velocity and
the mean temperature, scaled by the freestream parameters,
at three different streamwise stations markedlas(2), and
(3) in Fig. 4 which, respectively, correspond x@=0.35,,
X,=2.48y, and x3=4.55,. Because the evolution of the
mean flow is very small due to the small streamwise extent,
little difference is observed. Figure (§ plots the relation-
ship between the mean streamwise velocity and the mean
temperature at these stations. It can be seen that the relation-

0.0016 i

C;0.0012 ..

0.0008

72000 12500 13000

Re,

FIG. 15. Distribution of the local skin frictio€; in terms of Rg. SDNS:
®; Eq. (47): —-—; and formula from LS minimization: —.

ship is independent of the streamwise location, which veri-
fies the assumption that we made in the rescaling method.
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For this zero-pressure-gradient boundary layer, Walz’s equa-
tion can describe the relationship very well.

Figure 17a) shows the mean streamwise velocity pro-
files under the transformation given by H®&) at the three
stations. The transformed velocity is scaled by, and the
wall-normal coordinate is nondimensionalized by the wall
units. Figure 17a) shows that the profiles collapse very well
using the transformation and scaling in the viscous region
(z+<5), and they satisfy the theoretical linear relationship
in the viscous region. Figure 1) shows the van Driest
transformed mean streamwise velocity profiles scaled with
u, at the three stations. Results from TDNS and ETDNS are
also included. The wall-normal coordinate is also nondimen-
sionalized using wall units. Figure @ shows that the pro-
files collapse very well using the transformation and scaling
in the logarithmic region (3@z* <200 in our casg and
they satisfy the theoretical logarithmic law. Near the bound-
ary layer edge, the mean streamwise velocity profiles from
SDNS, TDNS, and ETDNS do not collapse using the above
transformation. However, Fig. 13) shows that the data col-
lapse when we use the transformation given by (&) with
the wall coordinate scaled by the momentum thickness. In
fact, Eq. (18) gives the van Driest transformation on the
mean streamwise velocity defect.

Figure 18 shows the profiles of Reynolds stresses and
Reynolds heat fluxes at the three stations. They are obtained
by averaging scaled Reynolds stresses and Reynolds heat
fluxes in time. The wiggles on the profiles are due to the
insufficiency of averaging samples. In Figs(d8and 18§c),
the freestream parameters are to nondimensionalize the vari-
ables. In Figs. 1&) and 18d), the wall parameters are used
instead. We may expect that the spatial evolution of a Rey-
nolds stress or a Reynolds heat flux from Station 1 to Station

u)

e B i
250 500 750 1000
z FIG. 18. Comparisons among Stations

1, 2, and 3 for (a9)—(b) Reynolds
stresses(c)—(d) Reynolds heat fluxes.
Quantities in(a) and(c) are nondimen-

TP /p,uT,)

sionalized by the free stream param-
eters. Quantities ifb) and(d) are non-
dimensionalized by the wall
parameters. Statioil): — —; Station
(2): ---; Station(3): —.

Ay

250 500 750 1000

z
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2

I and decaying turbulence. However, the usage is valid pro-
T U/((y-l)Mzu T) vided that the turbulence is quasisteady and sustains for suf-
s e mms ficient time to gather statistics without apparent boundary
layer growth. We find that good quasistationary flow statis-
tics can be obtained if the sampling time is one order of
magnitude smaller than the characteristic flow-evolution
time. The extended temporal approach adds forcing to the
governing equations to account for the streamwise inhomo-
geneity and can achieve a statistically stationary mean flow
and turbulence. The forcing is constructed from available

information of flow evolution and n@ priori assumptions
about the flow are needed. The marching process in the ex-
tended approach allows the simulation of a series of bound-
ary layer stations. The data from the simulations with genu-
ine periodic boundary conditions are in good agreement with
0 0.5 those obtained from the extended temporal simulations,
(@ 2/8 which shows the validity of the use of genuine periodic
boundary conditions.
The rescaling method proposed in this paper is designed
15 T for the spatial simulation of compressible turbulent boundary
R layers. The main assumptions behind the method are that the
compressibility effects reduce to density variation effects and
that general temperature—velocity relationships exist in the
boundary layer. Based on similarity laws, the method res-
cales the flow field at a recycling station and then reintro-
duces the rescaled flow field to the inlet. The data show that
the method results in a spatial simulation which generates its
own inflow with little transient adjustment behind the inlet.
The simulation is carried out over a zero-pressure-gradient
flat plate, but the method may be extended to cases with
pressure gradient and/or geometric change because the
method does not assume any specific forms of similarity
laws and temperature—velocity relationships. As pointed out
I by Lund et al® in their modified Spalart method, when the
0 0.5 1 inlet is under a pressure distribution in equilibrium, the re-
(b) 2/ quired changes in their method as well as ours involve only
the computation of the friction velocity at the inlet and the
FIG. 19. Plots of théa) amplitude andb) phase relationships between the vertical velocity distribution at the upper boundary. The test
temperature fluctuations an_d the streamwise velocity fluctuations. Statiogjyylation shows good agreement with the theory.
(1): —-—; Station(2): ---; Station(3): —. . : . .
Realistic turbulence inflow is desired for a boundary
layer simulation, but it is not achievable unless a forced tran-

3 is small because the three stations are close. Howevetition is used, which can be very costly for controlled bound-
Figs. 18a) and 18c) show that the difference among the &Y layer con(jitions. The proposed rescaling tephnique is a
three stations is quite apparent. This may originate from in900d alternative in terms of accuracy and efficiency. We
sufficiency averaging samples. When scaled by wall parar.nshould also mention that under certain conditions, air reac-

’ : 38
eters, the difference becomes much smaller, as indicated BiPns take place in the boundary Iaﬁér”. Currently, there
Figs. 18b) and 18d). are no rescaling techniques to approximate the inflow. Thus,

Figure 19 plotsT,nU/(y— 1)M§Turms and —R, 1/ Vs understanding under what limiting conditions TDNS can be

2/6 at the three stations. In Fig. 19, we observe that assunfonsidered is useful.
ing a streamwise-location-independent relation between the

temperature fluctuations and the streamwise velocity fluctusBACKNOWLEDGMENTS
tions, as in Eq(32), is a good assumption. The rigorous SRA
is not satisfied in the bulk of the boundary layer.
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