
March 5, 1999 7:13

Proceedings of the
3rd ASME/JSME Joint Fluids Engineering Conference

July 18–22, 1999, San Francisco, CA, USA

FEDSM 99-7313

A PRIORI TEST OF SGS MODELS IN COMPRESSIBLE TURBULENCE

M. Pino Martı́n
Dept. of Aero. Eng. and Mechanics

University of Minnesota
Minneapolis, MN 55455

Email: pino@aem.umn.edu

Ugo Piomelli�

Dept. of Mechanical Engineering
University of Maryland

College Park, MD 20742
Email: ugo@eng.umd.edu

Graham V. Candler
Dept. of Aero. Eng. and Mechanics

University of Minnesota
Minneapolis, MN 55455

Email: candler@aem.umn.edu

ABSTRACT
An a priori study of subgrid-scale models for the unclosed

terms in the energy equation is carried out using the flow field ob-
tained from the direct simulation of homogeneous isotropic tur-
bulence. Scale-similar models involve multiple filtering opera-
tions to identify the smallest resolved scales and have been shown
to be the most active in the interaction with the unresolved sub-
grid scales (SGS). In the present study these models are found to
give more accurate prediction of the SGS stresses and heat fluxes
than eddy-viscosity and eddy-diffusivity models, as well as im-
prove prediction of the SGS turbulentdiffusion, SGS viscous dis-
sipation, and SGS viscous diffusion.

1 Introduction
Large-eddy simulation (LES) is a technique intermediate be-

tween the direct simulation (DNS) of turbulentflows and the solu-
tion of the Reynolds-averaged equations. In LES the contribution
of the large, energy-carrying structures to momentum and energy
transfer is computed accurately, and only the effect of the smallest
scales of turbulence is modeled. Since the small scales tend to be
more homogeneous and universal, and less affected by the bound-
ary conditions than the large ones, there is hope that their mod-
els can be simpler and require fewer adjustments when applied
to different flows than similar models for the Reynolds-averaged
Navier-Stokes equations.

While a substantial amount of research has been carried out
into the modeling aspects and requirements for incompressible
flows, the applications of large-eddy simulation to compress-
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ible flows have been significantly fewer. One of the reasons
for the comparatively small number of calculations of compress-
ible flows is undoubtedly the additional complexity introduced
by the need to solve an energy equation, which introduces ex-
tra unclosed terms. In addition to the subgrid scale stresses that
must be modeled in incompressible flows as well, several other
unclosed terms appear in the filtered equations for compressible
flows. Furthermore, the form of the unclosed terms depends on
the form of the energy equation chosen (internal or total energy,
total energy of the resolved field or enthalpy).

Early applications of LES to compressible flows used a trans-
port equation for the internal energy per unit mass, ε (Moin et
al. 1991, El-Hady et al. 1994) or for the enthalpy per unit mass, h
(Speziale et al. 1988, Erlebacher et al. 1992). In these equations,
the SGS heat flux was modeled in a manner similar to that used
for the SGS stresses, and the remaining terms (the SGS pressure-
dilatation Πdil , and the SGS contribution to the viscous dissipa-
tion, εv) were neglected.

Vreman et al. (1995b) performed a priori tests using DNS
data obtained from the calculation of a mixing layer at Mach num-
bers in the range 0.2–0.6 to establish the validity of these assump-
tions. They found that the SGS pressure-dilatation and SGS vis-
cous dissipation are of the same order as the divergence of the
SGS heat flux Qj, and that modeling εv improves the results, es-
pecially at moderate or high Mach numbers.

Vreman et al. (1995a,1995b) proposed the use of a transport
equation for the total energy of the filtered field, rather than either
the enthalpy or the internal energy equations; the same unclosed
terms that appear in this equation are also present in the internal
energy and enthalpy equations. This equation was also used by
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Normand and Lesieur (1992), who neglected both Πdil and εv.
Very few calculations have been carried out using the trans-

port equation for the total energy, despite the desirable feature
that it is a conserved quantity, and that all the SGS terms in this
equation can be cast in conservative form. This equation has
a completely different set of unclosed terms, whose modeling
is not very advanced yet. Knight et al. (1998) performed the
LES of isotropic homogeneous turbulence on unstructured grids
and compared the results obtained with the Smagorinsky (1963)
model with those obtained when the energy dissipation was pro-
vided only by the dissipation inherent in the numerical algorithm.
They modeled the SGS heat flux and an SGS turbulent diffusion
term, and neglected the SGS viscous diffusion.

In this paper, the flow field from a DNS of homogeneous
isotropic turbulence is used to compute the terms in the energy
equations, and evaluate possible models for their parameteriza-
tion. The work will be focused mainly in the total energy equa-
tion, both because of the lack of previous studies of the terms that
appear in it, and because of the desirability of solving a transport
equation for a conserved quantity.

In the following section, the governing equations are pre-
sented, the terms that require closure are defined, and the DNS
database used for the a priori tests is described. In Sections 3 and
4 several models for the unclosed terms are presented and tested.
Finally, some conclusions are drawn in Section 5.

2 Problem formulation
2.1 Governing equations

To separate the large from the small scales, LES is based
on the definition of a filtering operation: a filtered (or resolved,
or large-scale) variable, denoted by an overbar, is defined as
(Leonard 1974)

f �x� �
Z

D
f �x��G�x�x�;Δ�dx�� (1)

where D is the entire domain and G is the filter function, and Δ is
the filter width, i.e., the wavelength of the smallest scale retained
by the filtering operation. The filter function determines the size
and structure of the small scales.

In compressible flows, it is convenient to use Favre-filtering
(Favre 1965a, 1965b) to avoid the introduction of subgrid-scale
terms in the equation of conservation of mass. A Favre-filtered
variable is defined as:

f̃ � ρ f�ρ� (2)

To obtain the equations governing the motion of the resolved ed-
dies, the Favre-filtering operation must be applied to the equa-
tions of conservation of mass, momentum and energy. In com-
pressible flows, in addition to the mass and momentum equations,

one can choose between solving an equation for the internal en-
ergy, enthalpy or total energy. The filtered equations of motion,
then, can be put in the form:

∂ρ
∂t

�
∂

∂x j
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ρeu j

�
� 0� (3)
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�
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Here, uj is the velocity in the j direction, ρ is the density, p the
pressure and T the temperature, ε� cvT is the internal energy per
unit mass, h � ε� p�ρ is the enthalpy per unit mass, E � ε�
uiui�2 is the total energy per unit mass, and the diffusive fluxes
are given by

eσi j � 2eμeSi j �
2
3
eμδi jeSkk� eq j ��ek ∂eT

∂x j
� (8)

where eμ is the molecular viscosity, and ek is the thermal conduc-
tivity corresponding to the filtered temperature eT . The effect of
the subgrid scales appears through the SGS stresses τi j, the SGS
heat flux Q j, the SGS pressure-dilatation Πdil , the SGS contri-
bution to the viscous dissipation, εv, the SGS turbulent diffusion
∂J j�∂x j, and the SGS contribution to viscous diffusion, ∂D j�∂x j;
these quantities are defined as:

τi j � ρ �guiu j � euieu j� (9)

Q j � ρ
�gu jT � eu j

eT� (10)

Πdil � pSkk � peSkk (11)

εv � σ jiSi j � eσ ji
eSi j (12)

J j � ρ
�
�u jukuk � eu jgukuk

�
(13)

D j � σ jiui� eσ jieu j� (14)
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Figure 1. Energy spectra at t�τt � 1, 3 and 4. The squares correspond

to the filter-widths used in the a priori tests.

The equation of state has been used to express pressure-gradient
and pressure-diffusion correlations in terms of Q j and Πdil . It is
also assumed here that

μ�T�Si j � μ�eT�eSi j� (15)

and an equivalent equality involving the thermal conductivityap-
plies. Vreman et al. (1995b) performed a priori tests using DNS
data obtained from the calculation of a mixing layer at Mach num-
bers in the range 0.2–0.6, and concluded that neglecting the non-
linearities of the diffusion terms in the momentum and energy
equations is acceptable.

2.2 A priori tests
One method to evaluate the performance of models for LES

or RANS calculations is the a priori test, in which the velocity
fields obtained from a direct simulation are filtered to yield the
exact SGS terms, and the filtered quantities are used in a model-
ing ansatz to evaluate the accuracy of the parameterization. The
database used in this study was obtained from the calculation of
homogeneous isotropic turbulence decay.

The Navier-Stokes equations were integrated in time using
a fourth-order order Runge-Kutta method. The spatial deriva-
tives were computed using an eighth-order accurate central finite-
difference scheme. The simulations were performed on grids
with 2563 points, so that a large range of scales is found in the en-
ergy spectrum. The computational domain is a periodic box with
length 2π in each dimension. The fluctuating fields were initial-
ized as in Martı́n and Candler (1996) and the DNS results were
validated by comparison with the Martı́n and Candler (1996) sim-
ulations.

The calculation was performed at a Reynolds number Reλ �
u�λ�ν� 35, where λ is the Taylor micro-scale and u� is the turbu-

lence intensity, and at a turbulent Mach number Mt � q�a� 0�52,
where q2 � uiui and a is the speed of sound. Since the dilatational
field is initiallyzero, the flow is allowed to evolve for one dimen-
sionless time unit, τt � λ�u�.

The subgrid scale quantities were then evaluated. The DNS
fields were filtered using a top-hat filter

f i �
1
2n

�
fi� n

2
�2Σi� n

2�1
i� n

2�1 fi � fi� n
2

�
(16)

with varying filter widths Δ � nΔ, where Δ is the grid size and
n� 2, 4, 6, 8 and 10. Figure 1 shows the energy spectrum includ-
ing the location of the filter cutoffs. All the filter-widths tested lie
in the decaying region of the spectrum. Most of the results will be
shown for a filter-width Δ � 8Δ, at the edge of the inertial range
of the spectrum. With this filter width approximately 11% of the
energy resides in the subgrid-scales, a value representative of ac-
tual LES. Two quantities are used to evaluate the accuracy of a
model: the correlation coefficient of the modeled term with the
exact one, defined as

C� f � �
h f model f DNSi

rms� f model�rms� f DNS�
� (17)

and the L2�norm of the modeled and exact terms.

3 Models for the momentum equation
The modeling of the SGS stresses has received compara-

tively more attention than any of the other unclosed terms in com-
pressible flows. Yoshizawa (1986) proposed an eddy-viscosity
model for weakly compressible turbulent flows using a multi-
scale direct-interaction approximation method. The anisotropic
part of the SGS stresses is parameterized using the Smagorinsky
(1963) model, while the SGS energy τkk is modeled separately:

τi j �
δi j

3
τkk � �C2

s 2Δ2ρ jeSj�eSi j �
δi j

3
eSkk

�
�C2

s αi j (18)

τkk � CI2ρΔ2
jeSj2 �CIα (19)

with Cs � 0�16 and CI � 0�09.
Speziale et al. (1988) proposed the addition of a scale-similar

part to the eddy-viscosity model of Yoshizawa. Scale-similar
models are based on the assumption that the most active subgrid
scales are those closer to the cutoff wavenumber, and that the
scales with which they interact most are those right above the cut-
off (Bardina et al., 1980). The mixed model proposed by Speziale
et al. (1988), and used by Erlebacher et al. (1992) and Zang et
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al. (1992) was given by

τi j �
δi j

3
τkk � Csαi j �Ai j �

δi j

3
Akk (20)

τkk � CIα�Akk � (21)

where Ai j � ρ �feuieu j �
eeui
eeuj�. Erlebacher et al. (1992) tested the

constant coefficient model a priori and by comparing DNS and
LES results of compressible isotropic turbulence and found good
agreement in the dilatational statistics of the flow, as well as high
correlation between the exact and the modeled stresses. Zang et
al. (1992) compared the DNS and LES results of isotropic tur-
bulence with various initial ratios of compressible to total kinetic
energy. They obtained good agreement for the evolution of quan-
tities such as compressible kinetic energy and fluctuations of the
thermodynamic variables.

Moin et al.(1991) proposed a modification of the eddy-
viscositymodel (18–19) in which the two model coefficients were
determined dynamically, rather than input a priori, using the
identity (Germano 1992) Li j � Ti j �cτi j , which relates the “re-
solved turbulent stresses”,

Li j �
�
�ρui ρu j�ρ

�
� cρui

cρu j�bρ � (22)

the subgrid-scale stresses τi j and the subtest stresses Ti j �bρ ğuiu j�bρ ĕui ĕu j, where ĕf �cρ f�bρ , and the hat represents the appli-
cation of the test filter bG, of characteristic width bΔ� 2Δ. Moin et
al. (1991) determined the model coefficients by substituting the
models (18–19) into (22) and contracting with eSi j; in this work
the contraction proposed by Lilly (1992) to minimize the error in
a least-squares sense will be used instead. Accordingly, the two
model coefficients for the Dynamic Eddy-Viscosity model (de-
noted hereafter by the acronym DEV) will be given by

C �C2
s �

hLi jMi ji

hMklMkli
�

1
3
hLmmMnni

hMklMkli
� CI �

hLkki

hβ� bαi � (23)

where βi j � �2bΔ2bρ jĕSj�ĕSi j � δi j
ĕSkk�3�, Mi j � βi j � cαi j, β �

2bΔ2bρ jĕS j2, and the brackets h�i denote averaging over the compu-
tational volume. Dynamic model adjustment can be also applied
to the mixed model (20–21), to yield the Dynamic Mixed model
(DMM)

C �
hLi jMi ji�hNi jMi ji

hMlkMlki
�

1
3
hLmmMnni� hNmmMnni

hMlkMlki
(24)

CI �
hLkk �Nkki

hβ� bαi � (25)
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Figure 2. A priori comparison of the normal SGS stresses τ11.

DEV; DMM; DMM-1; � DNS. (a) Correlation coefficient; (b)

rms fluctuations.

with Bi j � bρ �ğ̆eui ĕuj �
ĕ̆eui
ĕ̆euj�, and Ni j � Bi j �cAi j. One advantage

of mixed models is that they allow one to model the trace of the
SGS stresses without requiring a separate term of the form (19).
A one-coefficient dynamic mixed model (DMM-1) would be of
the form

τi j �Cαi j�Ai j� (26)

with

C �
hLi jMi ji�hNi jMi ji

hMlkMlki
� (27)

Figures 2 and 3 compare the diagonal and off-diagonal com-
ponents of the SGS stress tensor predicted by the various mod-
els. Consistent with the results of previous investigators eddy-
viscosity models are not to be able to predict the rms of the SGS
stresses very accurately. All models have high correlation with
the DNS data, although, for the DEV model, that is due to the
trace of τkk . The eddy-viscosity prediction of the off-diagonal
terms (Fig. 3) has, in fact, a much lower correlation coefficient.
In general, the one-coefficient mixed model (26–27) appears to
be the most accurate among those tested. Its correlation with
the exact SGS stresses is always greater than 0.8, and the pre-
diction of the rms is consistently more accurate than that of the
eddy-viscosity model (and is also more accurate than that ob-
tained with the two-coefficient mixed model, in which the SGS
energy is modeled separately).

The coefficient Cs remained nearly constant at a value of 0.15
throughout the calculation, consistent with the theoretical argu-
ments (Yoshizawa 1986). The coefficient of the SGS energy, CI,
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Figure 3. A priori comparison of the off-diagonal SGS stresses τ12.

DEV; DMM and DMM-1; � DNS. (a) Correlation coefficient;

(b) rms fluctuations.

on the other hand, has a value three times higher than predicted
by the theory, consistent with the results of Moin et al. (1991).

4 Models for the energy equations
A comparison of the magnitude of the unclosed terms in

the three forms of the energy equation (5), (6) and (7) is shown
in Fig. 4. Unlike in the mixing layer studied by Vreman et
al. (1995b), in this flow the pressure dilatation Πdil is negligi-
ble, and the viscous dissipation εv is less than one-tenth of the di-
vergence of the SGS heat flux. Thus, the only term that requires
modeling in the internal energy or enthalpy equations is Q j. In
the total energy equation, on the other hand, the SGS turbulent
diffusion ∂J j�∂x j is significant. In the following, several models
for the more significant terms will be examined.

The most important term to be closed (Fig. 4) is the diver-
gence of the SGS heat flux (10). The simplest approach is to use
an eddy-diffusivity model of the form:

Q j ��
ρνT

PrT

∂eT
∂x j

��C
Δ2ρ jeSj

PrT

∂eT
∂x j

� (28)

where C is the eddy-viscosity coefficient in (23). The turbulent
Prandtl number PrT can be fixed, or adjusted dynamically accord-
ing to PrT �ChTkTki�hK jTji, where

K j �
�
�ρu j ρT�ρ

�
� cρu j

cρT�bρ � (29)

Tj � �bΔ2bρ jĕSj ∂ ĕT
∂x j

�Δ2
�

ρ jeSj ∂eT
∂x j

� (30)
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Figure 4. Comparison of unclosed terms in the energy equations. (a)

Terms in the internal energy or enthalpy equations; (b) total energy equa-

tion. Divergence of the SGS heat flux, ∂Qj�∂x j; SGS vis-

cous dissipation εv; pressure dilatation Πdil ; SGS turbulent

diffusion ∂Jj�∂x j; � SGS viscous diffusion ∂Dj�∂x j.

A mixed model of the form

Q j ��C
Δ2ρ jeSj

PrT

∂eT
∂x j

�

�geu j
eT �eeuj

eeT� (31)

was proposed by Speziale et al. (1988). The model coefficient C
is given by (24); PrT can again be assigned a priori or adjusted
dynamically according to

PrT �C
hTkTki

hK jTji� hVjTji
� (32)

with

Vj � bρ
�ğ̆eu j

ĕT �
ĕ̆eu j
ĕ̆eT��

�

ρ
�geu j

eT �eeu j
eeT�� (33)

In Figure 5 the models described above are compared. The
eddy-diffusivitymodels have poor correlation with the DNS data,
as is the case with these types of model. The constant-PrT case
(the value used was 0.7, following Zang et al. 1992) gives a very
low value of the rms of the modeled Q j. A lower value, PrT �
0�4, as used by Speziale et al. (1988) would, however, give rms
fluctuations nearly identical to those predicted using the dynamic
procedure. The mixed model gives the best correlation with the
data (again around 0.8), but over-predicts the rms; at early times
the mixed model gives results in better agreement with the data
than the eddy-diffusivity one, but for t�τt � 3 the latter gives
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Figure 5. Coefficient, correlation and rms of the model for the SGS heat

flux Q j. (a) Turbulent Prandtl number, PrT ; (b) correlation coefficient;

(c) rms. Eddy-diffusivity model, fixed Prandtl number; eddy-

diffusivity model, variable Prandtl number; mixed model; � DNS.

more accurate results. A limitation of this study is the fact that
the filter width is already in the decaying region of the spectrum,
a situation that has been shown to degrade the accuracy of the dy-
namic procedure (Meneveau and Lund 1997).

The other term that can be significant in the enthalpy or in-
ternal energy equations is the viscous dissipation εv. Vreman et
al. (1995b) proposed three models for this term:

ε�1�v � Cε1

�
�eσ jieSi j � eeσi j

eeSi j

�
; (34)

ε�2�v � Cε2ρeq3�Δ� eq2 � Δ2
jeSj2; (35)

ε�3�v � Cε3ρeq3Δ� eq2 � feukeuk �
eeuk
eeuk� (36)

The first is a scale-similar model; the second and third use dimen-
sional analysis to represent the SGS dissipation as the ratio be-
tween the cube of the SGS velocity scale, eq, and the length scale,
and assign the velocity scale using either the Yoshizawa (1986)
model (19) or the scale-similar model. For consistency, each of
the last two models should be coupled with the corresponding
model for τkk . Based on their DNS data, Vreman et al. (1995b)
fixed the values of the coefficients that give the correct magnitude
for this term and obtained: Cε1 � 8, Cε2 � 1�6 and Cε3 � 0�6. Al-
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Figure 6. Coefficient, correlation and rms of the model for the viscous

dissipation εv. (a) Model coefficient; (b) correlation coefficient; (c) rms.

Scale similar (34); Dynamic (35); Dynamic (36);

� DNS.

ternatively, the dynamic procedure can be used to give

	
�eσ ji
eSi j �dρσi j

dρSi j�bρ 2


�

	
E�n�

v �
cε�n�v



� (37)

where

E�1�
v � Cε1

�
�̆ĕσ ji
ĕSi j �

ĕ̆eσi j
ĕ̆eSi j

�
; (38)

E�2�
v � Cε2

bρ ĕq3
�bΔ� ĕq2

� bΔ2jĕSj2; (39)

E�3�
v � Cε3bρ ĕq3

�bΔ� ĕq2
�
ğ̆euiĕu j �

ĕ̆eui
ĕ̆euj� (40)

Model coefficients obtained from the dynamic procedure in
this form (in which there is no contraction) can become ill-
conditioned, since the two terms in the denominator may be ap-
proximately equal, giving spuriously high values of the denom-
inator. This behavior was observed in model (34), in which ac-
ceptable results were obtained only if Cε1 was constrained to be
positive, and model (35). The model given by (36), on the other
hand, was well behaved.

Figure 6 compares the predictions of the three models. The
values of the coefficients obtained from the present a priori test
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Figure 7. Correlation and rms of the model for the turbulent diffusion Jj.
(a) correlation coefficient; (b) rms. Knight et al. (1998) model;

� DNS.

are lower than those obtained in the mixing layer by Vreman et
al. (1995b). The pure scale-similar model (34) and the model
(36), which also uses scale similarity to supply the velocity scale,
give the best correlation and nearly correct rms amplitudes. The
rms predicted by the model (35) is two orders of magnitude larger
than the others, and cannot be seen in the plot. In this flow the co-
efficients obtained from the mixing layer data would yield high
values of the modeled rms, indicating some lack of universality
for the modeling of this term.

The two terms in the total energy equation that require mod-
eling are the SGS turbulent diffusion ∂J j�∂x j and the SGS vis-
cous diffusion ∂D j�∂x j. The only calculation that attempted to
model the former was that by Knight et al. (1998). They argued
that eui � eeui and proposed a model of the form

J j � eukτ jk� (41)

This model is compared in Fig. 7 with the DNS data; τ jk was ob-
tained from the DMM-1 model (41). The model has a high cor-
relation with the data (of order 0.8), and the rms also matches
the data well. It should be noticed, however, that the model is
built upon the prediction of the SGS stresses by DMM-1, which
over-predicts the rms of the normal stresses by 30%, that of the
off-diagonal ones by about 50%. It appears that the modeling as-
sumption by itself might underestimate the diffusion, an error that
is compensated by one of opposite sign in the SGS stress model.
The high correlation, however, indicates that addition of a model
coefficient, perhaps adjusted dynamically, may be beneficial.

The SGS viscous diffusion ∂D j�∂x j is the smallest of the
terms in the total energy equation. It is 5% of the divergence of
Q j at t�τt � 1, but increases to about 10% at the final time. No
model for this term has been proposed in the literature to date.
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Figure 8. Coefficient, correlation and rms of the model for the viscous

diffusion Dj. (a) Model coefficient; (b) correlation coefficient; (c) rms.

Scale-similar model; � DNS.

One possibility is to parameterize it using a scale-similar model
of the form

D j �CD�
geσi jeui�

eeσi j
eeui�� (42)

in which the coefficient can be obtained from

CD �

	�
�ρσi j ρui

ρ2 �
dρσi j
cρui

bρ 2

�
R j



hRkRki

� (43)

where

Rl �

�
�̆ĕσlk ĕuk �

ĕ̆eσlk
ĕ̆euk

�
�

�
�

�eσlkeuk�
�eeσlk
eeuk

�
� (44)

As can be seen from Fig. 8, however, this approach gives a fairly
poor correlation, and fair agreement for the prediction of the rms
intensities. This error may, however, be tolerable given the small
contribution that this term gives to the energy budget.

5 Conclusions
Several mixed and eddy-viscosity models for the momentum

and energy equations have been tested. The velocity, pressure,

7 Copyright © 1999 by ASME



density and temperature fields obtained from the DNS of homo-
geneous isotropic turbulence at Reλ � 35, Mt � 0�52 were filtered
and the unclosed terms in the momentum, internal energy and to-
tal energy equations were computed.

In the momentum equation, mixed models were found to
give better prediction, in terms of both correlation and rms ampli-
tude, than the pure eddy-viscosity models. The dynamic adjust-
ment of the model coefficient was beneficial, as already observed
by Moin et al. (1991).

In the internal energy and enthalpy equations, in this flow,
only the divergence of the SGS heat flux was significant; the SGS
pressure dilatation Πdil and viscous dissipation εv, which were
significant in the mixing layer studied by Vreman et al. (1995b),
were found to be negligible here. Once again, mixed dynamic
models gave the most accurate results. In particular, the turbu-
lent Prandtl number obtained dynamically was somewhat lower
than the value of 0.7 often assigned a priori.

In the total energy equation two additional terms are present,
one of which, the turbulent diffusion ∂J j�∂x j is significant. The
model proposed by Knight et al. (1998), which parameterizes the
turbulent diffusion in terms of the SGS stresses, correlates well
with the actual SGS stresses, and predicts the correct rms ampli-
tude. A mixed model for the SGS turbulent diffusion has also
been proposed and tested, although this term is much smaller than
the others.

Although the preliminary results obtained in this investiga-
tion are promising, and indicate that it is possible to model the
terms in the energy equations, and in particular in the total energy
one, accurately, further work is required to extend these results to
cases in which the pressure-dilatation is significant, as well as to
inhomogeneous flows. A posteriori testing of the models in ac-
tual calculations is also necessary for a complete evaluation of the
model performance.
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