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The characterization of the turbulence structure using statistical analysis1 and a geo-

metric packet-finding algorithm2 is explored. We follow structures which have been identi-

fied by the geometric packet-finding algorithm, using automated object segmentation and

feature tracking software,3,4 and observe how these structures and their associated wall

signatures evolve in time. Using a direct numerical simulation database, we begin to assess

the turbulence structure given by each method and the evolution of this structure.

I. Introduction

The coherence of the turbulence structure in boundary layers is now widely accepted. Theodorsen5

postulated the existence of the hairpin vortex, a simple flow structure that explains the formation of low-
speed streamwise streaks and the ejection of near-wall low-momentum fluid into higher-momentum regions
farther from the wall, see Fig.1. Head & Bandyopadhyay6 provided experimental evidence of the streamwise
stacking of individual hairpin vortices into larger structures, packets, whose heads describe an envelope
inclined at a 15◦ to 20◦ downstream angle. More recently, Adrian, Meinhart, & Tomkins7 proposed a
hairpin packet model, where the hairpins in a packet align in the streamwise direction as observed by Head
and Bandyopadhyay. Packets enclose regions of low momentum induced by their heads and counter-rotating
legs, and align themselves in the streamwise direction giving rise to the low-momentum, very large-scale
motions (VLSM) observed experimentally by Jiménez8 and Kim & Adrian,9 see Fig.2. The current study of
the turbulence structure in boundary layers has been confined largely to the subsonic flow regime (Tomkins
& Adrian;10 del Álamo & Jiménez;11 Ganapathisubramani, Longmire & Marusic;12 del Álamo et al.;13 del
Álamo et al.;14 Guala, Hommena & Adrian;15 Hambleton, Hutchins & Marusic;16 Flores et al.;17 Balakumar
& Adrian;18 Hutchins & Marusic19 and Hutchins & Marusic,20 for example).

The study of supersonic and hypersonic turbulent boundary layers has been primarily restricted to
statistical analysis, due to the lack of detailed flow field data. Fernholz & Finley;21 Fernholz & Finley;22

Spina;23 Smits & Wood;24 Fernholz;25 and Smits & Dussauge,26 give reviews including the effects of pressure
gradient, streamline curvature and the interaction with shock waves in high-speed turbulent boundary layers.
These descriptions are statistical and some include qualitative flow visualizations. Structure information
such as convection velocity, angle, and length scale, has been obtained from space-time correlations (see,
for example, Smits et al.,27 Spina,28 and Smits & Dussauge26). The results indicate changes in structure
properties with both Mach and Reynolds numbers, such as a decrease in structure length with increasing
Mach number.

Recent advances in numerical and experimental techniques allow for detailed four-dimensional, in space
and time, flow field data acquisition. Direct numerical simulations make possible the computation of turbu-
lent boundary layers at supersonic and hypersonic Mach numbers (Guarini;29 Martin;30 Martin;31 Pirozzoli
& Grasso;32 Xu & Martin;33 Ringuette, Wu & Martin2) as well as the interaction of turbulence with strong,
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Case M∞ ρ∞ (kg/m3) T∞ (K) Tw/T∞ Reθ θ(mm) H δ(mm)

M3 2.99 0.0889 218.19 2.60 2328 0.423 5.1 5.69

M4 3.98 0.0914 219.20 3.84 3392 0.451 7.5 8.04

M5 4.96 0.0925 220.50 4.91 3669 0.388 9.5 8.90

M6 5.93 0.0942 221.86 7.30 4452 0.387 12.5 10.56

M7 6.88 0.0946 224.28 9.49 4990 0.374 15.4 12.11

M8 7.80 0.0948 227.72 11.91 5113 0.339 18.4 11.63

M5T2 5.00 0.0889 228.12 1.90 1691 0.190 7.4 3.20

M5T3 5.00 0.0908 224.12 2.39 2697 0.294 8.9 5.93

M5T4 5.00 0.0889 231.73 3.74 3713 0.443 10.1 8.92

M5T5 5.00 0.0937 220.97 5.40 5392 0.657 12.2 14.82

Table 1. Freestream, boundary layer, and wall parameters for the DNS.

Case δ+ Lx/δ Ly/δ Lz/δ ∆x+ ∆y+ Nx Ny Nz

M3 297 9.6 2.4 15.7 7.5 2.8 384 256 106

M4 333 9.2 2.3 26.7 8.0 3.0 384 256 114

M5 318 9.7 2.4 25.1 8.1 3.0 384 256 110

M6 258 12.2 3.0 37.6 8.2 3.1 384 256 114

M7 228 9.0 2.5 30.8 8.1 3.0 256 192 109

M8 173 11.5 3.2 31.0 7.8 2.9 256 192 105

M5T2 378 7.9 2.0 15.8 7.8 3.0 384 256 110

M5T3 386 7.5 1.9 16.7 7.7 2.9 384 256 110

M5T4 368 7.8 1.9 16.4 7.5 2.8 384 256 110

M5T5 382 7.4 1.8 14.0 7.4 2.8 384 256 110

Table 2. Grid resolution and domain size for the DNS.

unsteady shock waves (Adams;34 Pirozzoli & Grasso;35 Wu & Martin;36 Wu & Martin;37 Taylor, Grube
& Martin38). Advanced particle-image-velocimetry techniques allow the temporal and spatial characteriza-
tion of experimental supersonic turbulent boundary layers and shock boundary layer interactions (Schrijer,
Scarano & van Oudheusden;39 van Oudheusden;40 Humble, Scarano & van Oudheusden41). Both numeri-
cal2, 36 and experimental42, 43 data at supersonic Mach numbers have shown evidence of VLSM.

In this paper, we present a set of analytical tools to study the structures, in particular hairpin packets,
and their wall signature in boundary layers. In Section II, we present the direct numerical simulation
database of turbulent boundary layers with varying Mach number and wall-heat transfer. In Section III,
we summarize the geometric algorithm that is used to identify packets, and the correlation analysis that is
used to distinguish from weak, average and strong packets. We present preliminary results and conclusions
in Sections IV and V respectively.

II. DNS Database

We use the DNS database of Martin,30, 31 extended to Mach 8. The nominal flow conditions are given in
table 1, which provides the freestream density and temperature, ρ∞ and T∞, respectively, and the boundary
layer properties: momentum thickness, θ, shape factor, H = δ∗/θ, where δ∗ is the displacement thickness,
Reynolds number based on θ, Reθ, and boundary layer thickness δ. The wall condition for the Mach varying
data is isothermal and prescribed to be nearly the adiabatic temperature. For each condition,we have
accumulated 500 instantaneous DNS volumes, so that packet structures advance a total streamwise distance
of about 70δ, however in the present work the analyses are performed over roughly 160. Reθ is kept nearly
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constant, with an insignificant variation across the cases, whereas δ+ varies in roughly 175 to 400 across
the cases. The domain size, L, and the number of grid points, N , for the simulations are given in table 2,
with the ratio of δ to the wall unit, δ+; the superscript (+) indicates scaling with inner, or wall values.
We take the streamwise, spanwise, and wall-normal directions to be x, y, and z, respectively, and the grid
resolutions in the streamwise and spanwise directions are denoted in table 2 as ∆x+ and ∆y+. The details
of the numerical method are given by,31 as well as the accuracy of the simulations as compared to theory
and experiments. For reference, the DNS skin friction falls within 8% of the predictions.

III. Analytic Tools

A. Geometric Algorithm

The geometric algorithm is described in detail by Ringuette, Wu & Martin,2 here we summarize it. The
algorithm scans (x, z) planes for ideal packets conforming geometrically to the model of Adrian, Meinhart,
& Tomkins.7 Specifically, it searches for hairpin head, or transverse, vortices that are spaced close to one
another (≤ 0.5δ) in the streamwise direction and are arranged in a ramp-like formation with a small (≤ 45◦)
downstream angle relative to the wall. The head vortices are identified using a threshold of the spanwise
vorticity, ωy, and the swirling strength, λci,

44 such that λci must be greater than or equal to 4.5λci, where
the over-bar indicates the mean, and ωy is greater than or equal to 2 standard deviations from the mean; only
the region between the buffer layer (z+ = 30) and the boundary layer edge is considered for both computing
the threshold quantities and finding hairpin packets. The current version of the algorithm implements a
more sophisticated ‘clustering’ technique to find and catalog each vortex, where grid points flagged using the
identification thresholds are considered to be part of a single structure with any other grid points if their grid
locations are adjacent in any of the 8 planar directions. The algorithm has provisions for handling relatively
large (wall-normal height > 0.1δ, streamwise distance > 0.1δ) structures that are occasionally identified by
the thresholds, such as hairpin legs. The scheme checks whether or not a head vortex is above the leg, and
does not consider the structure if no head is found. A further refinement of the algorithm, implemented
in the current version, performs a least-squares-fit through the identified points of these large structures,
and rejects the structure outright if the angle of the line is less than 25◦. This removes the tendency of the
algorithm to occasionally accept large, relatively horizontal shear layers with high ωy or λci as hairpin heads.
The average packet properties determined using the algorithm before and after this improvement, however,
show little change; the refinement is useful primarily for instantaneous visualizations.

For each DNS volume, statistics on packet properties are obtained from all (x, z) planes, and the results
are averaged over multiple time realizations. Gathering packet statistics in two (x, z) planes separated by a
spanwise distance of 0.75δ, so that the evaluated structures are entirely independent, produces results within
6% of the spanwise-averaged data. Properties such as the packet angle, length, and streamwise hairpin
spacing, are based on the relative locations of the vortex cores in each packet. The geometric algorithm is
useful for obtaining detailed packet statistics and generating instantaneous visualizations. Figure 3 plots
contours of spanwise vorticity and velocity vectors identifying the hairpin heads that compose a packet in
an instantaneous field of a Mach 3 boundary layer. Figure 4 plots iso-surfaces of swirling strength showing
the three-dimensional visualization of the same packet.

B. Correlation Method

Brown & Thomas1 identified the average large-scale coherent structure in the boundary layer associated with
the unsteady signature of the wall shear stress, τw, by correlating τw at a single reference location with u at
different wall-normal distances. Correlation profiles were constructed by varying the streamwise separation
of u and τw, ∆x, both by converting time into distance using Taylor’s hypothesis of ‘frozen convection’
and physically shifting the streamwise measurement locations of u. They observed that the correlations
peak at an increasing downstream distance with increasing wall-normal location, indicating a downstream-
leaning coherent structure. Brown & Thomas1 proposed that, if such a structure existed, then conditionally
averaging the correlations on data traces that contained the structure would produce correlations of the same
shape but with higher magnitudes, which they called ‘enhanced’ correlations. Their criterion used for the
conditional averaging was that the correlation at z/δ = 0.25 be greater than twice the peak value at the ∆x
location of the peak, indicating a ‘strong’ event such as a turbulent burst in the lower part of the boundary
layer. Using this conditional method, they found stronger correlations of the same shape, which provided
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evidence of a ramp-like coherent structure in the boundary layer.
We use the same method to identify the average coherent structure associated with strong events, and

find it to have the characteristics of a hairpin packet. For each DNS condition, we perform the correlation
between τw and ρu at a streamwise location, x, as follows:

Rτw(ρu)(∆x) = 1/(x2 − x1)

〈∫ x2

x1

τ ′

w(x)(ρu)′(x + ∆x)dx

〉
/τ ′

w,RMS(ρu)′RMS .

The over-bar and angle brackets denote spatial (streamwise and spanwise) and temporal averaging, respec-
tively. A streamwise correlation width of −2δ ≤ ∆x ≤ 4δ was sufficient for both the average and ‘enhanced’
correlations to fall below 0.2. The correlation is done with mass-flux data at eleven wall-normal grid loca-
tions, starting with z/δ = 0.05 and z/δ = 0.1, then proceeding in 0.1δ increments to the boundary layer
edge. The ‘enhanced’ correlation is performed as described above, using the peak value and location of the
average correlation at z/δ = 0.2; the RMS values used to normalize this correlation are those of the strong
events. Figure 5 plots the Average and enhanced correlations for the Mach 3 data. Using this technique, we
can condition the sampling of the data and distinguish between weak, average and strong packets.

C. Relationship between the Geometric Algorithm and the Correlation Method

We determine profiles of the convection velocity for vortices belonging to hairpin packets using both the
geometric algorithm and the ‘enhanced’ correlation data. For the geometric algorithm,the convection velocity
of a single vortex in a packet is computed by averaging u at each grid point within the vortex; the value
is then associated with a wall-normal location corresponding to the vortex core, assumed to be where λci

for the vortex is a maximum. Although gathering statistics in two (x, z) planes is sufficient for determining
the average packet properties, more samples are required for converged profiles of the packet convection
velocity. To obtain further samples, we used the packet-finding code to identify packet vortices in every
(x, z) plane (i.e. the entire DNS volume), then employed a simple algorithm to scan through the volume and
gather convection velocity data only from purely independent vortices. The algorithm first finds a packet
vortex in a single (x, z) plane, computes the convection velocity of this vortex as described above, and then
removes from consideration all other vortex grid points within a (−0.15 ≤ ∆x/δ ≤ 0.15)× (−0.5 ≤ ∆y/δ ≤
0.5) × (−0.15 ≤ ∆z/δ ≤ 0.15) volume centered on the original point. The spanwise distance of 0.5δ is
approximately the average packet width, while the average streamwise packet vortex spacing is about 0.15δ
at all Mach numbers. This conservative spatial separation between data points provides statistical samples
that are clearly from independent structures. However, the results are very similar to those obtained using
every packet vortex in every (x, z) plane (i.e. spanwise averaging of the planar data).

For the ‘enhanced’ correlation method, we obtain the packet convection velocity at the eleven wall-normal
distances by computing the correlation profiles between u and the shear stress at each (x, y) wall location
(no spanwise or streamwise averaging). If the correlation peak at z/δ = 0.2 indicates a ‘strong’ event,
the streamwise velocity u is sampled at the (x + ∆x, z) peak location of the correlation profile at each of
the eleven wall-normal distances. The results at each z-location are averaged together. The (x + ∆x, z)
peak locations can be thought of as lying within the back of the ramp-like structure associated with each
instantaneous strong event. We chose to present the ‘enhanced’-correlation and geometric-algorithm data
spanwise averaged over all planes.

Essentially, statistics on the average packet structure can be found using the correlation analysis of
Brown and Thomas and the data can be categorized into average-strong, average-average, and average-
weak packets. In contrast, the geometric algorithm identifies only the subset of packets that conforms
with an ideal geometric criteria. When the geometric analysis is combined with the correlation analysis,
the geometric events can be also decomposed into average strong-geometric, average-geometric, and weak-
geometric packets.

Figure 6 plots the averaged vortex convection velocity and the mean flow velocity profiles for the Mach
3 data, given by the geometric analysis combined with the correlation analysis. For reference, the average
convection velocity of strong packets given solely by the correlation analysis is also plotted, as well as
the mean velocity profile. The data suggest that the average geometric packet is representative of strong
statistical packets.
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D. Packet Tracking

We use the Object Segmentation and Feature Tracking (Ostrk2.0) software package3, 4 to identify individual
vortical structures and track their evolution through subsequent flow realizations. The tracking software
operates on a set of subsequent, instantaneous, three-dimensional fields of the swirling strength. Ostrk
2.0 performs two distinct tasks on these data. First, it extracts vortical structures from the instantaneous
swirling strength fields. This is the object segmentation part of the software. The vortical features are
identified based on an iso-surface of the swirl that is generated at a user-specified threshold level (we use a
threshold of 4.5λci). Once the vortical structures have been identified in each individual flow realization, their
evolution is tracked through time from one flow realization to the next. The tracking algorithm recognizes
the creation of new objects, the merging of objects as well as the split and dissipation of objects. Further
details on Ostrk2.0, including the algorithms used for object segmentation and feature tracking, can be found
in the User Manual by Liang,3 and the paper by Wang and Silver.4

O’Farrell and Martin45 find that the tracking software performs poorly on a Mach 3 turbulent boundary
layer. When tracking an individual structure, or a small group of structures, the tracking software mistakenly
identifies a rapidly growing number of neighboring objects as belonging to the original structure. In other
words, the tracking software ‘proliferates’ the original structure. In order to eliminate this shortcoming,
we perform a number of pre-processing operations on the swirling strength fields. These pre-processing
operations are physically-rooted. First, we use the packet finding algorithm described in section A above
to identify geometrically-ideal hairpin packets. Second, we discard all hairpin packets except for those that
are associated with ‘strong’ events at the wall. By a ‘strong’ event, we mean a region at the wall where the
Brown and Thomas correlation, which was introduced in section B above, is elevated. The field that is used
for tracking contains the ‘strong’, geometrically-ideal hairpin packets only. At all points that do not belong
to one of these hairpin packets, the swirling strength is set to zero in these fields.

Figure 7 illustrates the tracking of a hairpin packet in a Mach 3, Reθ = 2, 390 turbulent boundary layer.
An iso-surface of the swirling strength corresponding to 4.5λci is shown, with the selected hairpin appearing
in blue. We show four subsequent time realizations to illustrate the tracking of the hairpin and its evolution
over time.

Figure 8 shows a canonical hairpin packet (visualized by an iso-surface of swirl) in incompressible channel
flow. The simulation was started with a single, ideal hairpin vortex. At the later time shown in figure 8 this
single hairpin vortex has spawned a child vortex at its upstream end. The entire hairpin packet, composed
of the child and parent objects, was successfully tracked with Ostrk2.0.

E. Wall Signatures

The experiments of Brown and Thomas,1 and Thomas and Bull46 in incompressible boundary layers have
shown characteristic patterns in the wall-shear stress and wall-pressure, which are hypothesized to be associ-
ated with large-scale coherent motions. Figure 9 is a reproduction of a schematic from the paper by Thomas
and Bull,46 which shows a large-scale, coherent motion together with the associated wall shear stress and
pressure signatures. Figure 10 shows the canonical case of a single, isolated hairpin vortex in incompressible
channel flow. The hairpin vortex is visualized in a streamwise-spanwise plane and in a streamwise-wall nor-
mal plane using an iso-surface of the swirl at 10% of the maximum swirl value for the initial frame in the data
set. The wall shear stress signature and the wall-pressure signature sampled at y = 2.97δ are also shown.
Due to its simplicity, this canonical flow is useful for verifying the hypothesized wall signatures of hairpin
packets. It is apparent that the shear stress has a peak at a location that coincides with the downstream
end of the hairpin legs. The wall-pressure distribution, however, has a significant minimum at a location
that coincides with the intersection of the hairpin head and its legs.

IV. Preliminary Results

A. General Effect on the Turbulence

We first examine how varying Mach number and wall temperature affect the transport of turbulence. Some
of the dynamics of the near-wall transport mechanisms may be observed from the turbulent kinetic energy
budget. There are four mechanisms for the exchange of turbulent kinetic energy: turbulent transport,
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production, dissipation and viscous diffusion. The budget equation for the turbulent kinetic energy is

∂

∂t

(
ρ k̃

)
+ w̃

∂

∂z

(
ρ k̃

)
= P + T + Πt + Πd + φdif + φdis + ST

where

P = −ρui′′w′′
∂ũi

∂z
,

T = −
1

2

∂

∂z
ρui′′ui′′w′′,

Πt = −
∂

∂z
w′′p′, Πd = p′

∂ui′′

∂xi

,

φdif =
∂

∂z
ui′′σi2′, φdis = σij ′

∂ui′′

∂xj

ST = −w′′ +
∂p

∂z
+ ui′′

∂σij

∂xj

− ρ k
∂w̃

∂z
,

and P is the turbulent energy produced due to mean gradients, T is the turbulent transport of kinetic energy,
Πt is the diffusion due to pressure, Πd is the pressure dilation term, φdif is the viscous diffusion term, φdis

is the viscous dissipation term, and ST represents a group of small terms. The first two of these are due to
the difference between Favre and Reynolds averaging and the third is a dilation-production term.

These terms are normalized by inner units and plotted in Figure 11 for the wall temperature varying
data and Figure 12 for the Mach number varying data. As expected, these terms reach their maximum
values within the buffer layer and attenuate with increasing wall-normal distance. Figure 11(a)–11(e) plot
each term individually for the varying wall temperature data versus z+. All these terms are combined in
Figure 11(f) and plotted against ζ+. ζ+ is a coordinate transform that takes into account mean variations
of the thermodynamic variables and molecular transport coefficients across the boundary layer to collapse
the data. It is given by

ζ+ =

∫ z

0

〈ρ〉uτ

〈µ〉
dz.

The maximum and minimum wall-normal locations of the budget terms are roughly the same when plotted
against ζ+, where as their locations do not collapse when plotted against z+. We find that the magnitudes
of these budget terms are attenuated as the wall temperature is lowered. This is consistent with the notion
that a cooled wall acts as an energy sink, removing available energy from the flow. Figure 11(f) shows all
of the dominant budget terms plotted against z+ for the varying Mach number simulations. We observe
little difference in these budget terms between the various Mach numbers, other than a slight increase in the
production and dissipation terms with increasing Mach number.

B. Packet Geometry and Convection Velocities

From the correlations of τw and ρu we can find the hairpin packet geometry and average downstream leaning
angle of packets. A set of points may be determined by finding the ∆x locations where the correlation
coefficient reaches its maximum at different wall-normal distances. A least squares linear regression may
be applied to these points to determine the characteristic structure angle. This may be done for ‘strong,’
‘average,’ and ‘weak’ correlations and may be done with the additional requirement that a ‘geometric event’
at the wall is present. This ‘geometric event’ is found by performing a least squares linear regression on the
points located at hairpin vortex cores, within a given packet, and finding where it intersects with the wall. In
Figure 13 we observe the geometry and, qualitatively, the characteristic angle and the ramp like structures,
but note that the data are poorly converged.

We are similarly able to obtain packet convection velocities by finding the mean of the velocities at each
wall-normal location where the instantaneous correlation, Rτ(ρu), is at a maximum. ‘Strong’ and ‘weak’
events may be distinguished in the same manner that the conditional method of Brown and Thomas1 is
taken: velocities are sampled at each wall-normal location when the instantaneous correlation at z/δ = 0.2
indicates a strong or a weak event. Figures 14(a–c) show the ‘strong,’ ‘average,’ and ‘weak’ convection
velocities using only the statistical correlation method. Figures 14(d–f ) show the convection velocities with

6 of 21

American Institute of Aeronautics and Astronautics Paper 2009-1328



the further condition that a geometric event is present at the wall. The mean velocity profiles are included
for reference. As expected the ‘strong’ packets induced greater drag and are the slowest whereas the ‘weak’
packets convect approximately with the mean flow and in the Mach 7 and 8 cases even more quickly. It is
interesting that the profiles of average convection velocities of statistically strong packets, Figure 14(a), and
that of ideal geometric packets, Figure 14(e), are nearly identical. This seems to suggest that ideal geometric
packets are representative of strong events across the Mach varying data.

C. Packet Tracking and Wall Signatures

We have successfully tracked a hairpin packet using the Ostrk software discussed in section III D. Using
this software we have followed a hairpin packet, highlighted in red in Figure 15, in a Mach 8 flow. After
tracking this packet and watching it evolve in time, we have plotted the associated wall signatures at a
selected instance in time. Figure 16 shows the wall pressure signature and Figure 17 shows the wall shear
stress signature. Above each of these wall signature plots is a visualization, using iso-surfaces of the swirl at
4.5λci, for the hairpin packet that we have identified and isolated. Two views of this packet are presented,
one looking down in the wall-normal direction and one from the side looking in the spanwise direction. The
structure of the hairpins in this particular packet is cane like, with multiple sets of counter rotating legs, or
canes. Both wall signatures are pronounced, and there is a significant peak in the wall shear stress associated
with the tail of the hairpin legs, as was observed for the lone hairpin in incompressible channel flow, shown
in Figure 10, and as hypothesized by Brown & Thomas and Thomas and Bull.

V. Summary

We have presented a number of analytic tools and techniques for identifying, quantifying, characterizing,
and tracking the evolution of hairpin packets. The geometric algorithm described in section A is used to
identify ideal hairpin packets conforming geometrically to the model of Adrian, Meinhart, and Tomkins.7 We
have also repeated the analysis of Brown and Thomas1 to further investigate the large scale coherent motions.
Additionally, using the ‘geometric events’ at the wall we may perform the Brown and Thomas statistical
correlation analysis on a subset of the data identified as hairpin packets by the geometric algorithm. From
these analyses we are able to find basic statistical quantities, such as the characteristic structure angle, packet
convection velocities, and information about the size, strength, and number of hairpin vortices making up
these packets.

Additionally, using the Ostrk2.0 object segmentation and feature tracking software,3, 4 we are able to
track hairpin packets identified by the geometric algorithm, which are associated with ‘strong’ events at the
wall. Through this we have an automated means of observing the evolution of hairpin packets and their
associated wall signatures.

Some rough, preliminary results associated with these analyses have been presented in section IV. We
note that these analyses have only been performed using a subset of the data which is now available to us.
When utilizing the entire data set, the convergence of the results presented in section IV, especially that of
the packet geometries (Figure 13), is expected to improve. In the future we plan to continue to use these
tools across the entire data set, and continue to present our findings on the effect of heat transfer and Mach
number on the structure of turbulent boundary layers.
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Figure 1. Theodorsen’s hairpin vortex.5 The arrows on either side of the hairpin indicate the direction of the
flow.

Figure 2. Hairpin packet model of Adrian et al.7.
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Figure 3. An x-z slice showing a hairpin packet from Ringuette et al.2 (flow from left to right). Contours
show spanwise vorticity and vectors give the in-plane velocity with 0.69Uδ subtracted from u. The black boxes
mark the hairpin heads identified by their packet finding algorithm.

Figure 4. Hairpin packet visualization using iso-surfaces of swirling strength from Ringuette et al.2 The
hairpins identified in Figure 3 are highlighted in red.
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(a) (b)

(c) (d)

Figure 7. Tracking hairpin packet in a Mach 3 boundary layer at Reθ = 2, 390. A hairpin packet was identified
in 7(a) and highlighted in blue. All other vortices are shown in white and at 50% translucency. The packet
was then tracked through subsequent DNS frames.
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Figure 8. Iso-surfaces of swirling strength of a single hairpin vortex spawning another one to form a packet.
Child and parent objects successfully tracked using the feature tracking and segmentation software. Data
taken from a DNS of incompressible channel flow by Green et al.47.

Figure 9. Model of organized structures in turbulent boundary Layers from Thomas & Bull,46 after Brown &
Thomas,1 as seen by an observer moving at 0.8U0
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Figure 10. Wall signatures in τwall and pwall for a lone hairpin packet in incompressible channel flow. Data
taken from a DNS of incompressible channel flow by Green et al.47.
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Figure 14. Average vortex convection velocity versus distance from the wall computed using the ‘strong,’
‘average,’ and ‘weak’ correlations of τw and ρu. (a–c) Using the correlations only, per the method of Brown
and Thomas.1 (d–f ) Using the correlations with the condition that a ‘geometric event’ at the wall is present.
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Figure 15. A hairpin packet in a Mach 8 boundary layer colored in red. Structures are visualized by an
iso-surface of swirl at 4.5λci. This packet is subsequently tracked and its wall signatures are identified below
in Figures 16 and 17.
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Figure 16. Wall-pressure signature of a hairpin packet in DNS of Mach 8 boundary layer. The top and middle
part of the figure show the vortical structure, visualized by an iso-surface of swirl (the threshold is 4.5λci).
The top part of the figure shows a streamwise-spanwise plane, and the middle part shows a streamwise-wall
normal plane. The bottom part of the figure plots the wall-pressure along three different streamwise lines.
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Figure 17. As in figure 16 above, except that the wall-shear stress signature is shown.
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