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Synchronization of Weighted Essentially

Non-Oscillatory Methods

Ellen M. Taylor∗ and M. Pino Mart́ın†

Princeton University, Princeton NJ 08544

Weighted essentially non-oscillatory (WENO) methods have been developed to simul-
taneously provide robust shock-capturing in compressible fluid flow and avoid excessive
damping of fine-scale flow features such as turbulence. Under certain conditions in com-
pressible turbulence, however, numerical dissipation remains unacceptably high even after
optimization of the linear component that dominates in smooth regions. We demonstrate
that a significant nonlinear source of dissipation error is a “synchronization deficiency”
that interferes with the expression of theoretically predicted numerical performance char-
acteristics when the WENO adaptation mechanism is engaged. We furthermore develop
and evaluate a technique that meaningfully reduces numerical dissipation associated with
the synchronization deficiency but that also faces significant obstacles to practical imple-
mentation that currently remain unresolved.

I. Introduction

The detailed simulation of compressible turbulence requires numerical methods that simultaneously avoid
excessive damping of spatial features over a large range of length scales and prevent spurious oscillations near
shocks and shocklets (small transient shocks) through robust shock-capturing. Numerical schemes that were
developed to satisfy these constraints include, among others, weighted essentially non-oscillatory (WENO)
methods.1 WENO schemes compute numerical fluxes using several different candidate stencils and form a
final flux approximation by summing weighted contributions from each stencil. Thus they are nonlinear.
Smoothness measurements cause stencils that span large flow field gradients to be assigned small relative
weights so that a nearly discontinuous shock would provide a weight of almost zero to any stencil containing
it. In smooth regions, the relative values of the weights are designed to be optimal by some gauge such as
maximum order of accuracy or maximum bandwidth-resolving efficiency.

Jiang and Shu2 cast the WENO methodology into finite-difference form and provide an efficient imple-
mentation of robust and high-order-accurate WENO schemes. Unfortunately, these schemes often generate
excessive numerical dissipation for detailed simulations of turbulence, especially for large-eddy simulations
(LES).3 WENO dissipation arises from two distinct sources: (i) the optimal stencil, which by itself describes
a linear scheme, and (ii) the adaptation mechanism, which drives the final numerical stencil away from the
optimal one. Bandwidth optimization can reduce the dissipation of the optimal stencil;4,5 and Mart́ın et
al.5 demonstrate that such a bandwidth-optimized symmetric WENO method indeed reduces numerical
dissipation and provides accurate results for direct numerical simulations (DNS) of isotropic turbulence and
turbulent boundary layers.

Nonetheless, engaging the nonlinear WENO adaptation mechanism still causes significant local dissipation
that can negatively affect global flow properties. Though higher resolution compensates for this, in some
cases adequately increasing the number of grid points is not feasible. There are two primary sources of
nonlinear error: (i) the smoothness measurement that governs the application of WENO stencil adaptation
and (ii) the numerical properties of individual candidate stencils that govern numerical accuracy when
adaptation engages. Wang and Chen6 have examined both sources for upwind-biased WENO methods in
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linearized problems; Ponziani et al.7 have examined the second source for symmetric WENO methods in
linear and nonlinear problems, including isotropic turbulence; and Henrick et al.8 have examined the first
source for upwind-biased WENO methods in linear and nonlinear problems. Additionally, Taylor et al.9

have examined the first source for symmetric WENO methods in linear and nonlinear problems, including
isotropic turbulence, and have introduced a linearly and nonlinearly optimized WENO method that allows
accurate DNS of compressible turbulence with significantly reduced grid sizes.9–11

The purpose of this paper is to demonstrate that there exists a WENO “synchronization deficiency” that
interferes with the expression of theoretically predicted candidate stencil properties and as a result generates
excessive numerical dissipation through the second nonlinear error pathway described above. We furthermore
develop and evaluate a forced synchronization technique that meaningfully reduces such dissipation but also
faces significant obstacles to practical implementation. Section II briefly describes the WENO methodology.
In Section III, we introduce the concept of the synchronization deficiency along with numerical evidence of
its consequences. Section IV then develops the forced synchronization technique and discusses its benefits
and drawbacks. Conclusions are drawn in Section V.

II. WENO Methodology

We describe the symmetric WENO methodology4,5 in the context of the one-dimensional advection
equation,

∂u

∂t
+

∂

∂x
f(u) = 0 (1)

This model equation represents the decoupled forms of equations belonging to any system of hyperbolic
conservation laws after a transformation from physical into characteristic space. If the spatial domain is
discretized such that xi = i∆, in which ∆ is the grid spacing, and ui = u (xi), Eq. (1) may be cast into the
semidiscretized form

dui

dt
= − 1

∆

(
f̂i+ 1

2
− f̂i− 1

2

)
(2)

in which f̂i+1/2 is a numerical approximation of f
(
u(xi+1/2)

)
. Once the right-hand side of this expression

has been evaluated, numerical techniques for solving ordinary differential equations, such as Runge-Kutta
methods, may be employed to advance the solution in time. In order to ensure stability, procedures that
approximate f(u) split it into f+(u), which has a strictly non-negative derivative, and f−(u), which has a
strictly non-positive one.

WENO schemes compute f̂+
i+1/2 through reconstructed interpolating polynomials on a number of can-

didate stencils each containing r grid points. In the symmetric WENO method, there are (r + 1) stencils
in total. The one fully upwinded stencil ranges from (i− r + 1) to i, the one fully downwinded stencil
ranges from (i + 1) to (i + r), and the other stencils fall in between these two extremes. Figure 1 pro-
vides a schematic of this arrangement for r = 3. Throughout this paper, we will abbreviate any WENO
implementation in which the candidate stencils contain r points as “WENO-r.”

If the flux approximation on stencil k, which contains r grid points, is designated as qr
k and the weight

assigned to that stencil is ωk, the final numerical approximation becomes

f̂+
i+ 1

2
=

r∑

k=0

ωkqr
k (3)

Specifically, qr
k emerge from reconstructed polynomial interpolants of maximal order r and are defined as

qr
k

∣∣∣i+ 1
2

=
r−1∑

l=0

ar
kl f(ui−r+k+l+1) (4)

in which ar
kl are tabulated coefficients; and ωk are normalized forms of weights Ωk defined as

Ωk =
Cr

k

(ε + ISk)p (5)
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in which ε prevents division by zero, ISk is a smoothness measurement that becomes large when discontinu-
ities are present within stencil k, and p may be varied to increase or decrease WENO adaptation sensitivity.
p = 1 typically provides sufficient adaptation with minimal dissipation. In completely smooth regions, each
stencil is equally desirable, and ωk revert to the optimal weights Ck.

The corresponding stencil diagram for f̂−i+1/2 is simply a mirror image of Fig. 1. Because the total number
of data points available to the symmetric WENO algorithm is 2r, its maximum order of accuracy is also
2r; however, the optimal stencils employed in the current work are bandwidth-optimized4,5 such that only
rth-order accuracy can be guaranteed. The bandwidth-optimization process also introduces a small amount
of artificial dissipation to an otherwise neutrally stable optimal stencil to enhance its stability. In practice,
the weight of the fully downwinded stencil ωr is artificially constrained to be no greater than the least of the
others so that other adverse stability effects are avoided.

The continuity of the WENO weighting process allows the performance characteristics of the final nu-
merical stencil to theoretically fall anywhere between those of the least favorable candidate stencil and those
of the optimal stencil. In order to gauge this variation quantitatively but efficiently in a flow field, Weirs4

proposed a combination of the adaptive stencil weights called the nonlinearity index (NI). It is essentially
a measure of the degree of departure from the optimal stencil and is defined as

NI =

(
r∑

k=0

[
1− (r + 1) (Ωk/Ck)∑r

l=0 (Ωl/Cl)

]2
) 1

2

(6)

This definition forces NI to always be non-negative, and only the optimal stencil can provide a value of
zero. It reaches its theoretical maximum, which is

√
r (r + 1), when any one candidate stencil is chosen

exclusively. We will often report NI in terms of NI ′, its value normalized by this maximum.

III. Synchronization Deficiency

A. Theory

In theory, the numerical performance characteristics (e.g. bandwidth-resolving capabilities) of the least
favorable WENO candidate stencil dictate a definitive lower bound on the performance characteristics of
any possible final weighted numerical stencil. If the flux approximation f̂i+1/2, calculated according to
the previous section, encompassed the entirety of the flux information required to approximate a spatial
derivative, this would be true in practice as well. Of course, in addition to f̂i+1/2, Eq. (2) demands f̂i−1/2,
which is rarely explicitly acknowledged because its calculation consists merely of shifting an index. Its
presence, however, significantly complicates the question of performance characteristics.

Let us fully expand Eq. (2), the left-hand side of which depends on a fixed combination of f̂i+1/2 and
f̂i−1/2. According to Eqs. (3) and (4),

f̂i+ 1
2

=
r∑

k=0

ωk

r−1∑

l=0

ar
kl fi−r+k+l+1 (7a)
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2

=
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kl fi−r+k+l (7b)

and so
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(8)
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in which coefficients can be equated to yield

br
kl =





−ar
k,0, l = 0

ar
k,l−1 − ar

kl, 0 < l < r

ar
k,r−1, l = r

(9)

The coefficients br
kl, rather than ar

kl, are the relevant parameters for determining and optimizing the properties
of the kth candidate stencil. Since br

kl are independent of the adaptive quantities ωk, the performance
characteristics of individual candidates appear to be guaranteed regardless of local WENO adaptation. The
flaw in this argument is the implicit assumption in Eq. (7) that ωk are equal for f̂i+1/2 and f̂i−1/2.

The smoothness measurement ISk depends entirely on the flux information available within stencil k,
which spans different points for f̂i+1/2 and f̂i−1/2. Because the collections of data values on the two versions
of the stencil will in general be unequal, the associated stencil weights ωk must be assumed to vary. If we
define ω±k to mean the ωk that belong to f̂i±1/2, Eq. (7) becomes

f̂i+ 1
2

=
r∑

k=0

ω+
k

r−1∑

l=0

ar
kl fi−r+k+l+1 (10a)

f̂i− 1
2

=
r∑

k=0

ω−k

r−1∑

l=0

ar
kl fi−r+k+l (10b)

and in turn Eq. (8) becomes
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in which coefficients can be equated to yield

b̃r
kl =





−ω−k
ω+

k

ar
k,0, l = 0

ar
k,l−1 − ω−k

ω+
k

ar
kl, 0 < l < r

ar
k,r−1, l = r

(12)

The relevant parameters for determining and optimizing the properties of the kth candidate stencil are now
the new coefficients b̃r

kl. These, unlike the old br
kl, do depend on the adaptive quantities ω±k ; and, since ar

kl

are fixed, b̃r
kl = br

kl if and only if ω−k = ω+
k . Note that equality necessarily holds when f̂i±1/2 both employ

the optimal stencil weights Cr
k . In regions in which WENO adaptation has engaged, however, inequality

can force the actual individual stencil characteristics to diverge from the expected theoretical properties
described by br

kl.
The theoretical error characteristics of a finite-difference scheme are often quantitatively presented in the

form of a modified wavenumber plot. Consider a linearly convected pure harmonic function of the form

f(x) = eikx = eiκx/∆ (13)

in which x is position, ∆ is grid spacing, and k and κ are dimensional and nondimensional wavenumbers, re-
spectively. The finite-difference approximation to its spatial derivative is equivalent to the analytic derivative
of a similarly defined function with the modified wavenumber

κ′(κ) = −i
∑

n

cn einκ (14)
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in which the coefficients cn specify the numerical scheme employed. The real and imaginary parts of κ′

describe phase and amplitude properties, respectively, and a hypothetical finite-difference scheme that fully
resolved all wavenumbers would produce κ′ = κ for 0 ≤ κ ≤ π. In the present case of symmetric WENO
methods,

cn =





−ω−0 ar
0,0, n = −r

r+n−1∑
m=0

ω+
mar

m,r+n−m−1 −
r+n∑
m=0

ω−mar
m,r+n−m, −r < n < 0

r−1∑
m=0

ω+
mar

m,r−m−1 −
r∑

m=1

ω−mar
m,r−m, n = 0

r∑
m=n

ω+
mar

m,r+n−m−1 −
r∑

m=n+1

ω−mar
m,r+n−m, 0 < n < r

ω+
r ar

r,r−1, n = r

(15)

In Fig. 2, we display the theoretical bandwidth properties of the linearly optimized WENO-3 scheme4,5

for an illustrative possible scenario in which the stencil weights are such that, for the calculation f̂i−1/2

(“left-hand” calculation), the first three stencils are equally utilized and the last one discarded, and for the
calculation of f̂i+1/2 (“right-hand” calculation), the first two stencils are equally utilized and the last two
discarded. Figure 1 provides a useful graphical reference for visualizing this scenario. Since the left-hand
arrangement incorporates more grid points and is more centrally situated relative to the point of interest, we
would expect its numerical characteristics to be more favorable than those of the right-hand arrangement. In-
deed, Fig. 2(a) confirms that if both calculations were forced to use the left-hand arrangement (“synchronized
left”) rather than the right-hand one (“synchronized right”), the modified wavenumber would more closely
approximate the exact wavenumber. It also shows that when the calculations are left unsynchronized, the
amplitude characteristics are little better than those of the worst component, and the phase characteristics
are actually significantly poorer than those of the worst component. The variation in phase characteristics
can be seen more clearly in Fig. 2(b), which plots the phase error ε = κ′/κ− 1.

B. Numerical Evidence

Though the WENO synchronization deficiency is certainly valid from a mathematical standpoint, and even
though it can under certain circumstances significantly degrade theoretical bandwidth properties, its cumu-
lative effects on actual numerical simulations may still turn out to be relatively small. We investigate this
possibility by implementing a naive forcibly synchronized WENO (SWENO) method for the one-dimensional
advection equation of Eq. (1). After obtaining the normalized stencil weights ωk according to Section II, we
set

〈Ωk〉 =
1
2

(
ω+

k + ω−k
)

(16)

and then normalize 〈Ωk〉 to form the synchronized stencil weights 〈ωk〉 that apply to calculations of both
f̂i+1/2 and f̂i−1/2.

The effects of synchronizing the linearly optimized WENO-4 scheme4,5 in this manner are presented in
Fig. 3, which depicts a linearly advected sine wave with seven points per wavelength after time integration
via a third-order-accurate Runge-Kutta scheme for twenty wavelength-times. For reference we include results
from the original (unsynchronized) WENO-4 scheme both with and without stencil adaptation permitted.
Figure 3(a) shows that, while the WENO-4 scheme causes notable dissipation, the SWENO-4 scheme main-
tains the proper wave shape nearly as faithfully as when adaptation is completely prohibited. In Fig. 3(b),
we plot the nonlinearity index NI ′ for each of these schemes to demonstrate that the improvement offered by
the SWENO method is not due simply to closer conformance to the optimal stencil. The decrease in overall
NI ′ from the adaptation-permitted WENO-4 scheme to the adaptation-prohibited scheme far exceeds the
decrease from the former to the SWENO-4 scheme, yet the SWENO-4 flow solution is almost equivalent to
the adaptation-prohibited solution.

This exercise proves that the synchronization deficiency is not merely a mathematical curiosity; its
consequences unquestionably contaminate the results of numerical simulations.
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IV. Forced Synchronization

Attempting to extend the forcibly synchronized WENO method of Section III(B) to non-smooth initial
data explains our previous warning that this approach is naive. Consider a linearly advected perfect shock
located somewhere between points xi−1 and xi as sketched for r = 3 in Fig. 4. Without explicitly calculating
the smoothness measurements ISk and resulting weights ωk, we can still qualitatively determine that a
candidate stencil receives small weight if it crosses the discontinuity and large weight otherwise. Also, recall
that the fully downwinded stencil is never allowed to hold more weight than the least-weighted of the others.
According to these principles, the bold stencils in the lower portion of Fig. 4 are those independently favored
for calculating f̂i±1/2, and the two resulting stencil arrangements are clearly mutually exclusive. If ω±k
are to be synchronized, some form of compromise is necessary; and any form of compromise under these
circumstances will undermine the WENO shock-capturing mechanism.

In order to preserve the robust shock-capturing capability of unsynchronized WENO methods, we must
selectively suspend synchronization in immediate neighborhoods (i.e. within approximately one grid spacing)
of strong discontinuities. One possible form for a quantitative suspension criterion arises from the root cause
of the perfect-shock synchronization failure above, which is the mutual exclusivity of the candidate stencil
arrangements favored for computing f̂i±1/2. In mathematical terms, for the scenario depicted in Fig. 4, the
ratio

χk =
min

(
ω+

k , ω−k
)

max
(
ω+

k , ω−k
) (17)

is much less than unity for all values of k for which ω+
k and ω−k are not both negligible. In practical terms,

this translates to the requirement that forced synchronization must be suspended when

χk < β (18)

in which β is a free parameter, and also that synchronization must be suspended when this holds for any
candidate stencil rather than for all of them. We will discuss the motivation and implications of the last
restriction later in this section; for now, the forcibly synchronized WENO method is complete enough that
we may briefly examine the importance of the synchronization deficiency in an example of non-smooth flow.

A. Shu-Osher Problem

The Shu-Osher problem places smooth density fluctuations upstream of a moving shock front to probe the
ability of a shock-capturing method to resolve discontinuities embedded within pseudoturbulence without
damaging fine structures. In our simulations, the conditions at the right boundary are atmospheric with
zero velocity, and the conditions at the left boundary are such that the shock between the two states has
a relative incoming Mach number of three. Sinusoidal density fluctuations are imposed upstream of this
shock with wavelength λ = 1

8L and excursions of ±0.2ρR, in which the subscript R indicates the right
boundary. Initially, the shock is positioned at x/L = λ, and we evolve simulations in time via a third-order-
accurate Runge-Kutta scheme until t = 0.21 L/aR. For reference, Fig. 5 displays converged density profiles
for the initial and developed states as computed by the WENO-4 scheme on an excessively fine grid of 2048
points. Upon termination, an undisturbed portion of the original fluctuation field lies upstream of the main
shock, immediately downstream is a region of physically correct high-frequency fluctuations, and further
downstream is a region of low-frequency fluctuations with interspersed shocklets.

In Fig. 6, we examine the effects of forced synchronization, in which we set β = 0.05 in Eq. (18), on
solutions to the Shu-Osher problem as computed by WENO-3 schemes on 192 grid points. Figure 6(a) shows
that, at this resolution, the density profile of the original unsynchronized WENO scheme is sufficiently
accurate everywhere except within the high-frequency region, where it performs rather poorly. The SWENO
scheme, on the other hand, captures these fluctuations visibly more faithfully, indicating that in this case the
synchronization deficiency accounts for a large fraction of the excessive dissipation generated by the original
WENO method. Profiles of nonlinearity index NI ′ are presented in Fig. 6(b), and their rough equivalence
between the WENO and SWENO schemes indicates that, as we observed in the previous case of the linearly
advected sine wave, the benefits of forced synchronization cannot be attributed simply to closer conformance
to the optimal stencil.
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A similar analysis of synchronized versus unsynchronized WENO-4 schemes yields results that are ma-
terially identical to the those presented for the WENO-3 schemes.

B. Obstacles to Practical Implementation

Although the forcibly synchronized WENO method that we have constructed succeeds at reducing excessive
dissipation without compromising shock-capturing capability, we find that the practicality of its current form
is limited due to several interrelated obstacles.

The first is that an SWENO scheme with r points per candidate stencil demands significantly more
computational time than an unsynchronized WENO scheme with the same number of points. Efficient
WENO implementations recognize that f̂i+1/2 at grid point i = j is equivalent to f̂i−1/2 at point (i = j + 1)
and therefore calculate only f̂i+1/2 at each point. Synchronization, however, introduces the possibility that
f̂i+1/2 at i = j may depend on different stencil weights than those producing f̂i−1/2 at i = j + 1; thus
SWENO methods must calculate both f̂i±1/2 at every grid point.

The second obstacle is the requirement, for which we have not yet provided full motivation, that forced
synchronization must be suspended if Eq. (18) holds for any candidate stencil. In other words, synchroniza-
tion is permitted only if no stencil weight is wildly out of synch with its counterpart. If all stencil weight pairs
ω±k are more or less in synch, then no discontinuity is located within the reach of the optimal stencil, and
therefore the optimal stencil, which by definition has the most favorable performance characteristics possible,
will generate adequately non-oscillatory flux approximations. In previous work,9 we have constructed and
evaluated a modified WENO method that encourages aggressive application of the optimal stencil wherever
possible with little increase in computational cost. Since synchronization currently takes place only when
the optimal stencil is also appropriate, and since it adds significant computational cost, practicality favors
alternative modifications such as the one just described.

During the discussion leading to Eq. (18), we first noted that forced synchronization must be suspended
if this equation holds for all candidate stencils for which at least one of the stencil weight pair ω±k is non-
negligible; then we shifted without explanation to the more conservative requirement that synchronization
must be suspended if it holds for even one stencil. The former criterion, unlike the latter, would allow
forced synchronization to proceed even in the vicinity of a discontinuity provided that it was located near
the edges of the optimal stencil and not the center. As long as there existed at least one candidate stencil
favored by the calculations of both f̂i±1/2, synchronization would be permitted and its benefits realized. In
principle this hypothetical SWENO scheme could accomplish more than is possible by aggressively applying
the optimal stencil, but what prevents us from implementing this theoretically superior method is a third,
more subtle, obstacle.

The form of the spatial derivative in Eq. (2) is not simply a matter of notational convenience. In the
immediate vicinity of a shock, the flux leaving cell i = j to the right (f̂i+1/2=f̂j+1/2) must precisely equal the
flux entering cell i = j + 1 from the left (f̂i−1/2=f̂j+1/2); otherwise, propagation of the shock front proceeds
incorrectly. The form of Eq. (2), coupled with the understanding that only f̂i+1/2 is explicitly computed at
each grid point, guarantees this proper flux behavior. As the point of interest moves away from the shock,
the strictly conservative structure may be greatly relaxed, which is why finite-difference constructions that
violate this principle, such as central Padé schemes,12 may be employed without consequence in smooth
flow regions. The third obstacle to implementing forced synchronization is that the WENO smoothness
measurement technique, as currently formulated, cannot be trusted to identify with sufficient fidelity the
non-smooth regions in which precise flux conservation is necessary. As an illustration, in Fig. 7 we plot the
profiles of WENO-3 and WENO-4 nonlinearity index NI ′ that arise from a linearly advected shock wave
with a numerical width between three and four grid spacings, which is typical of a well-captured shock.
Immediately downstream and upstream of the shock front, high NI ′ indicates a sufficient impediment to
inappropriate synchronization, but within the shock front, where strict flux conservation is paramount, NI ′

drops dangerously low.

V. Conclusions

When adaptation draws the final numerical stencil away from the optimal stencil, WENO methods ex-
hibit a synchronization deficiency that interferes with the expression of theoretically predicted numerical
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performance characteristics, and this contributes significantly to numerical dissipation. We have demon-
strated the extent to which forced synchronization can reduce this dissipation in linear advection simulations
of smooth oscillations and Euler simulations of the shock/pseudoturbulence interaction of the Shu-Osher
problem. Based on these findings, we expect the synchronization deficiency to account for a large fraction
of excessive dissipation in general compressible turbulent flows.

Forced synchronization cannot be applied in the immediate vicinity (i.e. within approximately one grid
spacing) of a discontinuity because to do so would undermine the shock-capturing capability of the WENO
methodology. This constraint is dictated by theoretical and mathematical considerations and is inviolable,
but a discontinuity located toward the edges of the optimal stencil can be considered outside the immediate
vicinity and is therefore not a necessary condition for synchronization suspension. Unfortunately, the existing
WENO smoothness measurement technique poorly distinguishes between non-smooth regions that require
a strictly conservative flux-differencing structure and those that do not. Thus, in order to guarantee proper
shock propagation, the window in which synchronization can be permitted must be so narrow that similar
benefits can be achieved by the computationally simpler procedure of more aggressive application of the
optimal stencil.

Because the numerical characteristics of individual candidate stencils are significantly compromised by
the WENO synchronization deficiency, we recommend against attempting to improve WENO performance by
optimizing candidate stencil coefficients. Any gains produced by such an approach should be negligible. The
WENO smoothness measurement technique, on the other hand, has become an even more attractive target
than before. If the smoothness measurement could be made to more faithfully identify shock-associated re-
gions, then in addition to any direct benefits to unsynchronized WENO schemes, the expanded opportunities
for forced synchronization might render its cost acceptable.
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Figure 1. Symmetric WENO candidate stencils for approximating the numerical flux f̂+
i+1/2

when the number

of points per candidate stencil is r = 3.
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(a) Phase and amplitude representations of the modified wavenumber.
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(b) Phase error representation of the modified wavenumber.

Figure 2. Bandwidth properties of the WENO-3 scheme when the “left-hand” calculation utilizes only the first
three candidate stencils equally, discarding the last one, and the “right-hand” calculation utilizes only the first
two equally, discarding the last two. Open and filled symbols indicate phase and amplitude characteristics,
respectively.
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(a) Numerical and exact solutions.
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(b) Nonlinearity index NI′ layed over the exact solution.

Figure 3. Linearly advected sine wave with seven points per wavelength as computed by WENO-4 and
synchronized WENO-4 (SWENO-4) schemes, with and without adaptation, after twenty wavelength-times.
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Figure 4. Symmetric WENO candidate stencils for approximating the numerical fluxes f̂+
i±1/2

when the number

of points per candidate stencil is r = 3 and a perfect shock is located somewhere between points xi−1 and xi.
Bold stencils are strongly weighted.
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Figure 5. Converged density profiles of the Shu-Osher problem as computed on 2048 grid points by the
WENO-4 scheme.
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(a) Density profiles.
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(b) Profiles of nonlinearity index NI′.

Figure 6. Shu-Osher problem as computed on 192 grid points by WENO-3 and synchronized WENO-3
(SWENO-3) schemes.
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Figure 7. Profiles of WENO-3 and WENO-4 nonlinearity index NI′ across a linearly advected shock wave with
a numerical width between three and four grid points.
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