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Weighted essentially non-oscillatory (WENO) methods have been developed to simul-
taneously provide robust shock-capturing in compressible fluid flow and avoid excessive
damping of fine-scale flow features such as turbulence. Under certain conditions in com-
pressible turbulence, however, numerical dissipation remains unacceptably high even after
optimization of the linear component that dominates in smooth regions. We therefore con-
struct and evaluate WENO schemes that also reduce dissipation due to two independent
nonlinear error sources: (i) the smoothness measurement that governs the application of
stencil adaption away from the linear optimal stencil, and (ii) the numerical accuracy (e.g.
order-of-accuracy and bandwidth) properties of the less favorable stencils that take over
when adaption engages. Direct numerical simulations (DNS) include one-dimensional test
cases and three-dimensional compressible isotropic turbulence. Although efforts to address
the second source listed above fail to meaningfully alter WENO performance, the smooth-
ness measurement modification inspired by the first source both significantly enhances
numerical accuracy and generates negligible additional computational expense. Moreover,
this technique appears to be broadly effective regardless of flow configuration.

I. Introduction

The detailed simulation of compressible turbulence requires numerical methods that simultaneously avoid
excessive damping of spatial features over a large range of length scales and prevent spurious oscillations near
shocks and shocklets (small transient shocks) through robust shock-capturing. Numerical schemes that were
developed to satisfy these constraints include, among others, weighted essentially non-oscillatory (WENO)
methods.1 WENO schemes compute numerical fluxes using several different candidate stencils and form a
final flux approximation by summing weighted contributions from each stencil. Smoothness measurements
cause stencils that span large flow field gradients to be assigned small relative weights so that a nearly
discontinuous shock would provide a weight of almost zero to any stencil containing it. In smooth regions,
the relative values of the weights are designed to be optimal by some gauge such as maximum order of
accuracy or maximum bandwidth-resolving efficiency.

Jiang and Shu2 cast the WENO methodology into finite-difference form and provide an efficient imple-
mentation of robust and high-order-accurate WENO schemes. Unfortunately, these schemes often generate
excessive numerical dissipation for detailed simulations of turbulence, especially for large-eddy simulations
(LES).3 WENO dissipation arises from two distinct sources: (i) the optimal stencil, which on its own de-
scribes a linear scheme, and (ii) the adaption mechanism, which drives the final numerical stencil away from
the optimal one. Bandwidth optimization can reduce the dissipation of the optimal stencil;4,5 and Mart́ın
et al.5 demonstrate that such a bandwidth-optimized WENO method indeed reduces numerical dissipation
and provides accurate results for direct numerical simulations (DNS) of isotropic turbulence and turbulent
boundary layers.
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Nonetheless, engaging the nonlinear WENO adaption mechanism still causes significant local dissipation
that can negatively affect global flow properties. Though higher resolution compensates for this, in some
cases adequately increasing the number of grid points is not feasible. According to Mart́ın,6 LES of turbulent
boundary layers fail with these linearly optimized WENO schemes because of insufficient distinction between
shock-containing and smooth regions on typical LES grids. Additionally, Wu et al.7 encounter disparities
between DNS and experiments of shock/turbulent-boundary-layer interactions and determine that nonlinear
WENO dissipation is responsible for the disagreement even at the highest possible resolutions.

The purpose of this paper is to construct and evaluate linearly optimized WENO schemes that also
reduce dissipation due to nonlinear error sources for DNS of compressible turbulence. We separately address
two such sources: (i) the smoothness measurement that governs the application of WENO stencil adaption,
and (ii) the coefficients of the individual candidate stencils that govern numerical accuracy when adaption
engages. Section II describes the symmetric WENO methodology, bandwidth optimization procedures, and
three-dimensional turbulent flow configurations in which we test the modified WENO schemes. In Sections
III and IV, we present motivations for and derivations of techniques that aid in suppressing error from
the two sources listed above. These techniques are (i) overwriting smoothness measurement values with
limiting values under certain conditions and (ii) bandwidth-optimizing each candidate stencil in addition to
the optimal one. Sections III and IV also include results from numerical simulations.

II. Background

A. Symmetric WENO Methodology

We describe the symmetric WENO methodology4,5 in the context of the one-dimensional linear advection
equation,

∂u

∂t
+

∂

∂x
f(u) = 0 (1)

This model equation represents the decoupled forms of equations belonging to any system of hyperbolic
conservation laws after a transformation from physical into characteristic space. If the spatial domain is
discretized such that xi = i∆, in which ∆ is the grid spacing, and ui = u (xi), Eq. (1) may be cast into the
semidiscretized form

dui

dt
= − 1

∆

(
f̂i+ 1

2
− f̂i− 1

2

)
(2)

in which f̂i+1/2 is a numerical approximation of f
(
u(xi+1/2)

)
. Once the right-hand side of this expression

has been evaluated, numerical techniques for solving ordinary differential equations, such as Runge-Kutta
methods, may be employed to advance the solution in time. In order to ensure stability, procedures that
approximate f(u) split it into f+(u), which has a strictly non-negative derivative, and f−(u), which has a
strictly non-positive one.

WENO schemes compute f̂+
i+1/2 through interpolating polynomials on a number of candidate stencils

each containing r grid points. In the symmetric WENO method, there are (r + 1) stencils in total. The
one fully upwinded stencil ranges from (i− r + 1) to i, the one fully downwinded stencil ranges from (i + 1)
to (i + r), and the other stencils fall in between these two extremes. Figure 1 provides a schematic of this
arrangement. Throughout this paper, we will abbreviate any WENO implementation in which the candidate
stencils contain r points as “WENO-r.”

If the flux approximation on stencil k, which contains r grid points, is designated qr
k and the weight

assigned to that stencil is ωk, the final numerical approximation becomes

f̂+
i+ 1

2
=

r∑

k=0

ωkqr
k (3)

Specifically, qr
k emerge from polynomial interpolants of maximal order r and are defined as

qr
k

∣∣∣i+ 1
2

=
r−1∑

l=0

ar
kl f(ui−r+k+l+1) (4)
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in which ar
kl are tabulated coefficients; and ωk are normalized forms of weights αk defined as

αk =
Cr

k

(ε + ISk)p (5)

in which ε prevents division by zero, ISk is a smoothness measurement that becomes large when discontinu-
ities are present within stencil k, and p may be varied to increase or decrease WENO adaption sensitivity.
p = 1 typically provides sufficient adaption with minimal dissipation. In completely smooth regions, each
stencil is equally desirable, and ωk revert to the optimal weights Ck. As formulated by Jiang and Shu,2

ISk =
r−1∑
m=1

∆2m−1

∫ xi+1/2

xi−1/2

[
∂m

∂xm
qr
k(x)

]2

dx (6)

in which qr
k (x) is an interpolating polynomial for the flux that may or may not be the same as the one that

leads to qr
k

∣∣
i+1/2 in Eq. (4). Equivalently,

ISk =
r−1∑

l=0

r−1∑
m=0

dr
klm f(ui−r+k+l+1) f(ui−r+k+m+1) (7)

in which dr
kml are the coefficients that arise from Eq. (6).

The corresponding stencil diagram for f̂−i+1/2 is simply a mirror image of Fig. 1. Because the total number
of data points available to the symmetric WENO algorithm is 2r, its maximum order of accuracy is also 2r.
In practice, the weight of the fully downwinded stencil ωr is artificially constrained to be no greater than the
least of the others so that adverse stability effects are avoided. Throughout this paper, we will abbreviate a
WENO implementation in which the candidate stencils contain r points and the optimal stencil is formally
nth-order accurate as “WENO-r/n.” n < 2r implies that bandwidth optimization has been applied to the
optimal stencil, and n < r implies that bandwidth optimization has been applied to both the optimal and
candidate stencils.

The continuity of the WENO weighting process allows the performance characteristics of the final numer-
ical stencil to fall anywhere between those of the least favorable candidate stencil and those of the optimal
stencil. In order to gauge this variation quantitatively but efficiently in a flow field, Weirs4 proposed a
combination of the adaptive stencil weights called the nonlinearity index (NI). It is essentially a measure
of the degree of departure from the optimal stencil and is defined as

NI =

(
r∑

k=0

[
1− (r + 1) (αk/Ck)∑r

l=0 (αl/Cl)

]2
) 1

2

(8)

This definition forces NI to always be non-negative, and only the optimal stencil can provide a value of
zero. It reaches its theoretical maximum, which is

√
r (r + 1), when any one candidate stencil is chosen

exclusively. Ideally, in smooth regions where WENO adaption is unnecessary, NI should remain much less
than this maximum so that the favorable performance capabilities of the optimal stencil are realized.

B. Bandwidth Optimization

Bandwidth-resolving efficiency quantifies the ability of a numerical approximation to resolve a range of spatial
frequencies and is therefore important for the detailed simulation of turbulence, in which relevant length
scales span several orders of magnitude. The computational grid serves as the framework for bandwidth
properties: the largest resolvable wavelength is equal to the length of the domain, and the smallest is equal
to two grid spacings. The latter, however, is a theoretical limit because numerical methods may impose
additional constraints. Though spectral methods can fully resolve all available wavenumbers, their global
operations render them inefficient for parallel computing. Alternatively, finite-difference schemes, which are
local in nature and thus minimize interprocessor communication, always limit bandwidth-resolving efficiency.
WENO methods belong to the second class.

The bandwidth properties of linear numerical schemes are determined by Fourier analysis. Consider a
pure harmonic function

f(x) = eikx (9)
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in which x is position and k is wavenumber. Then

f ′(x) = ik f(x) (10)

and, if we define n as any integer and ∆ as grid spacing,

f(x + n∆) = eink∆ f(x) (11)

A general finite-difference method approximates the first derivative according to the formula

f ′(x) =
1
∆

∑
n

cn f(x + n∆) (12)

in which cn are nondimensional coefficients unique to a particular scheme. We may equate Eqs. (10) and
(12) to yield

ik′ f(x) =
1
∆

∑
n

cn eink∆ f(x) (13)

If we designate κ = k∆, this reduces to

κ′(κ) = −i
∑

n

cn einκ (14)

κ′ is known as the modified wavenumber, and a numerical method that fully resolved all wavenumbers
would produce κ′ = κ for 0 ≤ κ ≤ π. < (κ′) describes phase characteristics and = (κ′) describes amplitude
characteristics.

The primary approach to optimizing bandwidth properties is to delay the separation of < (κ′) from κ′ = κ
to the highest feasible wavenumber. For such a process Lele8 defines phase error as [< (κ′)− κ] /κ and
bandwidth-resolving efficiency index as the value of κ/π for which this error first rises above an arbitrary
threshold ε. A secondary and often interwoven approach to optimizing bandwidth properties is to shift
amplitude errors to those wavenumbers for which the phase errors are already considerable. This allows
small amounts of deliberate dissipation to continue to stabilize a simulation without corrupting otherwise
pristine data. Balanced contributions from both approaches can be achieved by minimizing an integrated
error function originally due to Lockard et al.9 and later modified by Weirs:4

I =
∫ π

0

eν(π−κ)
(
σ [< (κ′ − κ)]2 + (1− σ)

[= (κ′)− γ sinµ
(

1
2κ

)]2)
dκ (15)

Increasing σ places more emphasis on reducing phase errors rather than amplitude errors; increasing ν
places more emphasis on reducing errors at lower wavenumbers; and adjusting γ and µ alters the incentive
for neutrally stable schemes to favor dissipative amplitude errors over dispersive errors.

If the WENO adaption mechanism is switched entirely off, the optimal stencil weights form a linear
numerical scheme to which Fourier analysis can be applied. Figure 2 presents κ′(κ) for the bandwidth-
optimized optimal stencils of various symmetric WENO schemes and, for reference, several well-established
central Padé schemes.8 Above κ′ = 0 is < (κ′), and below is = (κ′), which in this case is uniformly dissipative.

C. DNS of Isotropic Turbulence

Because it is difficult to artificially mimic the sensitivity of turbulent features to numerical dissipation
with simpler configurations, we include among our test cases three-dimensional direct numerical simulations
(DNS) of decaying isotropic turbulence. Isotropic turbulence is a canonical flow field that realistically
represents the small scales of many turbulent flows. The physical domain is a three-dimensional cube with
periodic boundary conditions and an edge length such that the large-scale turbulence statistics are sufficiently
uncorrelated between the center and edges. An evenly-spaced Cartesian grid discretizes this domain into N3

points. We approximate the viscous terms of the Navier-Stokes equations with fourth-order-accurate finite
differences and advance the solution in time with a third-order-accurate Runge-Kutta scheme.

The following two parameters are important for the generation of an initial field: the turbulent Mach
number
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Mt =
q

〈a〉 (16)

in which 〈a〉 is the average speed of sound and q is the root-mean-squared velocity summed over all directions,
and the Reynolds number based on the Taylor microscale

Reλ =
〈ρ〉u′rmsλ

〈µ〉 (17)

in which u′rms is the root-mean-squared velocity and λ is the Taylor microscale. Note that Mt and Reλ are
not constant throughout a simulation because the global strength of turbulent fluctuations steadily decays
over time without external forcing, which we do not include.

III. Relative Smoothness Limiter

Because the optimal stencil of a WENO scheme provides optimal performance in smooth regions, any
technique that discourages unnecessary adaption can improve WENO dissipation characteristics in compress-
ible turbulence. The following approach requires modification of the smoothness measurement and does not
affect the candidate stencil coefficients akl in Eq. (4) or optimal stencil weights.

A. Theory

When the polynomial interpolant qr
k(x) in Eq. (6) is order-optimized (i.e. replicates tabulated data exactly),

the Taylor expansion of ISk yields

ISk = ∆2 [f ′(ui)]
2 + O

(
∆4

)
(18)

Ideally, in smooth regions where WENO adaption is unnecessary, ISk should be of the order of ε from Eq. (5);
in other words, ISk ¿ 1. Now consider a linearly advected smooth sinusoidal function of nondimensional
wavenumber κ (nondimensionalized by ∆):

f(u(x)) = u(x) = sin
(κx

∆

)
(19)

In this case, Eq. (18) becomes

ISk(x) = κ2 cos2
(κx

∆

)
+ O

(
∆4

)
(20)

Thus for smoothly varying fuctions, ISk < 1 requires κ < 1, which corresponds to a grid resolution of more
than roughly six grid points per wavelength (PPW). To ensure that ISk < 0.1 more than twenty points per
wavelength are necessary. These restrictions indicate that the WENO smoothness measurement as defined in
Eq. (6) triggers adaption too readily and thereby causes unnecessarily degradation of WENO performance.

Jiang and Shu2 suggest that the over-adaption tendencies of WENO methods may be mitigated by
redefining the smoothness measurement ISk at points where it falls below a threshold value.

ISk =

{
0, ISk < α

ISk, otherwise
(21)

In this procedure, effectual values of the absolute limiter α are arbitrary and strongly depend on the specific
flow field configuration. Because it is preferable to achieve wide applicability to general turbulent flows, we
propose a modified limiting procedure:

ISk =

{
0, R(IS) < α

ISk, otherwise
(22)

in which

R(IS) =
max

0≤k≤r
ISk

ε + min
0≤k≤r

ISk
(23)
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and in turn ε is the value employed in Eq. (5). Though the relative limiter α is still arbitrary, the focus
on relative rather than absolute thresholds allows a general effectual value to be derived. Figure 3 displays
the WENO-3 R(IS) for the sinusoidal wave described above on grids providing six, eight, and twelve points
per wavelength. It is apparent that for six or more points per wavelength, R(IS) is less than one order of
magnitude, and therefore we set α = 10 in Eq. (22). Any WENO method that employs the relative limiting
procedure with this threshold value will be referred to as WENO-RL.

B. Numerical Simulations

The Shu-Osher problem is an ideal one-dimensional flow configuration for testing numerical methods that
must simultaneously capture shocks and avoid damping turbulent structures. Its initial conditions consist
of a perfect normal shock with imposed density fluctuations downstream, and as time progresses, these
fluctuations interact with and become altered by the shockwave. In Fig. 4(a), we present WENO-3/3 and
WENO-3/3-RL nonlinearity index profiles for Shu-Osher simulations on a 200-point grid. They indicate
that in the physically correct high-frequency region immediately upstream of the main shock, the WENO-
3/3-RL scheme, unlike the WENO-3/3 scheme, does not adapt at all and thus employs its optimal stencil.
Everywhere else, including among the upstream low-frequency fluctuations, the adaption mechanisms of
both schemes perform similarly. Because the high-frequency oscillations are smooth and the left edges of the
low-frequency fluctuations are shocklets, this WENO-3/3-RL behavior is exactly what the relative limiting
procedure was designed to achieve. The WENO-3/3 and WENO-3/3-RL density profiles of Fig. 4(b) confirm
that the result is elimination of excessive dissipation without endangerment of the shock-capturing capability.

We next investigate the effectiveness of the relative limiter in simulations of three-dimensional compress-
ible isotropic turbulence. Figure 5 shows the temporal evolution of turbulent kinetic energy for N = 80 and
initial Reλ = 35 and Mt = 0.7 as computed by WENO-3/3, WENO-3/3-RL, WENO-4/4, and WENO-4/4-
RL schemes. Grid-converged results for N = 128 are also included. Although neither WENO-3/3 method
attains grid convergence with N = 80, the excess dissipation generated by the WENO-3/3-RL scheme is
only about as much as that of the more computationally expensive WENO-4/4 scheme. In addition, the
WENO-4/4-RL scheme, unlike the others, does indeed achieve grid convergence with merely N = 80 and is
therefore the most computationally efficient.

IV. Candidate Stencil Bandwidth Optimization

WENO adaption is necessary in simulations of compressible flow; thus any technique that improves the
performance characteristics of isolated WENO candidate stencils can also reduce excessive dissipation in
turbulence. In this section, the smoothness measurement retains the unmodified form presented in Section
II; in other words, no limiting procedures are employed.

A. Theory

Though the selection of any one candidate stencil to the exclusion of all others is rare, inspection of the
bandwidth properties of individual candidates elucidates the lower limits of WENO performance. The
bandwidth properties of the k = 0 and k = 1 order-optimized candidate stencils of the WENO-3 method are
presented in Fig. 6 along with the properties of the optimal stencil of the WENO-3/3 scheme for reference.
In addition, bandwidth-resolving efficiency indices for ε = 1.1% and ε = 2.5% are listed in Table 1 for
all candidates. Whereas the optimal stencil adequately resolves roughly half of the available wavenumber
spectrum, isolated candidate stencils are capable only of resolving less than a third, and the k = 0 (outside)
stencil fares especially poorly. Though the excessive phase error of the k = 1 (inside) stencil is not as severe,
its dissipation characteristics are not significantly more favorable than those of the k = 0 stencil.

We find that for WENO-3 and WENO-4 methods, bandwidth optimization of the candidate stencils fails
to meaningfully improve bandwidth properties until their order of accuracy has been reduced to first order.
Ponziani et al.10 investigate such bandwidth-optimized stencils and observe modest gains in both theory
and numerical simulations; however, they note that such a large reduction in order of accuracy interferes
with the benefits of grid refinement in detailed simulations of turbulence. We therefore restrict our attention
to bandwidth-optimized candidate stencils that retain at least second-order accuracy.

For WENO-5 methods, which allow for fifth-order-accurate candidate stencils, nontrivial improvement of
bandwidth properties emerges for optimization procedures that preserve orders of accuracy as high as three.

6 of 18

American Institute of Aeronautics and Astronautics Paper 2006-1091



If n is the order of accuracy of the candidates, the order of accuracy of the optimal stencil must lie between
n and (r + n). We choose nth-order accuracy in order to maintain the same number of free parameters
for bandwidth-optimization of the optimal stencil as are available in the original WENO-5/5 scheme. After
considering various values of ν and σ in Eq. (15) for n = 3, we determine that ν = 8 and σ = 1

2 produce the
most desirable bandwidth improvement, except for the k = 0 and k = 5 (outside) stencils, for which σ = 3

4
is best. To maintain consistency with the ideal parameters for optimizing the optimal stencil,4,5 we keep
nonzero γ and µ; but the original amplitude errors of the candidate stencils are sufficiently far from neutral
that the impact of these two factors is negligible.

Figure 7 shows the bandwidth properties of the k = 0, k = 1, and k = 2 candidate stencils of both the
original WENO-5/5 scheme and the new WENO-5/3 scheme as well as the properties of the WENO-5/5
optimal stencil for reference. In addition, Tables 2 and 3 list the bandwidth-resolving efficiency indices and
improvement percentages for ε = 1.0% and ε = 2.5%, respectively. Meaningful reduction of both phase and
amplitude errors is evident for all candidates, even for the k = 2 and k = 3 (inside) stencils. Though the
resolving efficiency indices of the k = 0 and k = 5 stencils decrease for ε = 1.0%, the twofold increases
for ε = 2.5% justify this trade-off. For the higher error tolerance, the phase properties of the WENO-5/3
candidate stencils compare favorably with those of a fourth-order central Padé scheme,8 which produces a
resolving efficiency index of 0.438.

B. Numerical Simulations

We first focus on the ability of the WENO-5/3 scheme to faithfully capture discontinuities without spurious
oscillations by simulating a one-dimensional inviscid shock tube on a 256-point grid. The density profile
across the resulting contact discontinuity is displayed in Fig. 8 for the WENO-3/3, WENO-4/4, WENO-5/5,
and WENO-5/3 schemes. These schemes produce identical results for the remaining shock tube features,
including the compression shock, so we do not show those profiles. We have set p = 1.0 as the default
working value in Eq. (5) and observe in Fig. 8 that this value fails to induce sufficient adaption for both
WENO-5 methods. Incrementally raising p to enhance adaption sensitivity, we find that in order to prevent
overshoots from developing at the contact discontinuity, we require p ≥ 1.4.

The Shu-Osher problem adds a one-dimensional idealization of smooth turbulent fluctuations to the sharp
discontinuities considered above. Figure 9(a) presents density profiles of the Shu-Osher problem’s shocklet-
containing low-frequency oscillations as computed on a 192-point grid by the WENO-5 methods that appear
in Fig. 8. Near the leftmost crest only the WENO-5/3 scheme with p = 1.4 tracks the converged solution
without minor oscillations. Density profiles of the smooth high-frequency fluctuations immediately upstream
of the main shock are shown in Fig. 9(b). As we would expect, the increased adaption sensitivity of higher
p values leads to unnecessary additional dissipation in “turbulent” regions; however, the WENO-5/3 scheme
is marginally better able to resist this degradation than the WENO-5/5 scheme.

For the three-dimensional compressible turbulence configurations, we run all WENO-3 and WENO-4
methods with p = 1.0 and all WENO-5 methods with p = 1.4, and thus indications of p values will be
suppressed. Figure 10 shows the temporal evolution in isotropic turbulence of turbulent kinetic energy for
N = 64 and initial Reλ = 35 and Mt = 0.7 as computed by WENO-3/3, WENO-4/4, WENO-5/5, and
WENO-5/3 schemes. Grid-converged results for N = 128 are also included. Though the WENO-5 methods
outperform the others, neither approaches grid convergence, and the profile generated by WENO-5/3 scheme
does not differ discernibly from that of the WENO-5/5 scheme.

V. Quantified Computational Performance

In Table 4, we quantitatively summarize the increase in computational expense incurred and the reduction
in numerical error achieved by each of the WENO schemes that we have presented in this paper. The
simulations are of compressible isotropic turbulence for N = 64, Reλ = 35, and Mt = 0.7 and employ
four processors in a 256-2.2 GHz Intel Xeon Prestonia cluster with a Myrinet interconnectivity switch for
processor communication. Numerical error is defined as the decay of turbulent kinetic energy in excess of grid-
converged results, for which N = 128. Note that Figs. 5 and 10 compare the results of each WENO scheme
to grid-converged results, and, alternatively, Table 4 compares the schemes only among themselves. The cost
of implementing the relative smoothness-limiting procedure is negligible and may be completely disregarded.
Newly apparent from this table is the observation that the WENO-4/4-RL scheme removes significantly
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more numerical error than either WENO-5 method with only half as much increased computational time
over the original WENO-3/3 scheme.

VI. Conclusions

We have described two distinct approaches to reducing the dissipation of WENO methods without com-
promising their shock-capturing capabilities for direct numerical simulations of compressible turbulence. Im-
plementations of these modifications were tested in the inviscid shock tube and Shu-Osher problems, which
are idealized one-dimensional cases, and decaying compressible isotropic turbulence, which is a canonical
three-dimensional turbulent field.

Our results suggest that the technique of bandwidth-optimizing the WENO candidate stencils fails to
meaningfully alter WENO performance. Although minor improvements are evident in the one-dimensional
cases under the WENO-5/3 scheme versus the WENO-5/5 scheme, simulations of isotropic turbulent flow
exhibit no differences that would favor the former. On the other hand, we find that the technique of con-
straining WENO adaption with a relative smoothness limiter both significantly enhances numerical accuracy
for all tested problems and generates negligible additional computational expense. Also, the relative (as op-
posed to absolute) limiter appears to be broadly effective regardless of flow configuration when set to a
value of one order of magnitude, which arises naturally from considerations of smooth waves. We therefore
encourage the use of either the WENO-3/3-RL scheme or WENO-4/4-RL scheme for numerical simulations
that employ WENO methods uniformly.
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WENO-3/3
Stencil ε = 1.1% ε = 2.5%

Optimal 0.497 0.525
k = 0 0.142 0.176
k = 1 0.246 0.304
k = 2 0.246 0.304
k = 3 0.142 0.176

Table 1. Bandwidth-resolving efficiency indices for the optimal and candidate stencils of the 3-point/3rd-order
symmetric WENO scheme.

ε = 1.0%
Stencil WENO-5/5 WENO-5/3 Improvement

Optimal 0.628 0.646 +3%
k = 0 0.186 0.159 −15%
k = 1 0.263 0.364 +38%
k = 2 0.350 0.408 +17%
k = 3 0.350 0.408 +17%
k = 4 0.263 0.364 +38%
k = 5 0.186 0.159 −15%

Table 2. Comparison of the bandwidth-resolving efficiency indices for the optimal and candidate stencils of
5-point/5th-order and 5-point/3rd-order symmetric WENO schemes. Error tolerance ε = 1.0%.

ε = 2.5%
Stencil WENO-5/5 WENO-5/3 Improvement

Optimal 0.654 0.670 +2%
k = 0 0.222 0.444 +100%
k = 1 0.314 0.398 +27%
k = 2 0.414 0.459 +11%
k = 3 0.414 0.456 +11%
k = 4 0.314 0.399 +27%
k = 5 0.222 0.445 +100%

Table 3. Comparison of the bandwidth-resolving efficiencies for the optimal and candidate stencils of 5-
point/5th-order and 5-point/3rd-order symmetric WENO schemes. Error tolerance ε = 2.5%.
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Run Time Error Relative to
Scheme Relative to WENO-3/3 WENO-3/3 WENO-3/3-RL

WENO-3/3 0% 0% +160%
WENO-3/3-RL −62% 0%

WENO-4/4 +26% −63% −3%
WENO-4/4-RL −93% −83%

WENO-5/5 +56% −72% −28%
WENO-5/3 −73% −29%

Table 4. Relative performance characteristics in isotropic turbulence of various symmetric WENO schemes,
including schemes employing the relative smoothness limiter (RL) and the scheme employing bandwidth-
optimized candidate stencils (WENO-5/3). The error is defined as excess decay of turbulent kinetic energy.

S1

S0

S3

S2

i−2 i−1 i i+3i+1 i+2

Figure 1. Symmetric WENO candidate stencils for approximating the numerical flux f̂+
i+1/2

when the number

of points per candidate stencil is r = 3.
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WENO (3-point/3rd-order)
WENO (4-point/4th-order)
WENO (5-point/5th-order)
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Central Pade (6th-order)

Figure 2. Bandwidth properties of the bandwidth-optimized optimal stencils of various symmetric WENO
schemes and, for reference, well-established central Padé schemes. Positive κ′ indicates phase and negative κ′
indicates amplitude.
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Figure 3. Ratio of the maximum to minimum WENO smoothness measurement ISk for a smooth sinusoidal
function on grids providing varying points per wavelength (PPW).
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(a) Profiles of nonlinearity index.
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(b) Density profiles.

Figure 4. Comparison of 3-point/3rd-order symmetric WENO schemes with and without a relative smoothness
limiter (RL) for simulations of the Shu-Osher problem.
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Figure 5. Temporal evolution of the average turbulent kinetic energy q2 (normalized by its initial value)
in compressible isotropic turbulence for symmetric WENO schemes with and without a relative smoothness
limiter (RL).
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(a) Stencil k = 0.
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(b) Stencil k = 1.

Figure 6. Bandwidth properties of selected order-optimized 3-point WENO candidate stencils and, for refer-
ence, the WENO-3/3 optimal stencil. Open and filled symbols indicate phase and amplitude, respectively.
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(a) Stencil k = 0.
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(b) Stencil k = 1.

κ/π

κ′
/π

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

Exact
Optimal
Candidate (OO)
Candidate (BO)

(c) Stencil k = 2.

Figure 7. Bandwidth properties of selected 5-point WENO candidate stencils under both order optimization
(5th-order) and bandwidth optimization (3rd-order) and, for reference, the WENO-5/5 optimal stencil. Open
and filled symbols indicate phase and amplitude, respectively.
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Figure 8. Density profiles across the contact discontinuity in an inviscid shock tube for symmetric WENO
schemes not employing a smoothness limiter.
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(a) Low-frequency region (with shocklets).
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(b) High-frequency region.

Figure 9. Density profiles downstream of the main shock for the Shu-Osher problem with symmetric WENO
schemes not employing a smoothness limiter.
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Figure 10. Temporal evolution of the average turbulent kinetic energy q2 (normalized by its initial value) in
compressible isotropic turbulence for symmetric WENO schemes not employing a smoothness limiter.
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