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We analyze, from the energy perspective, why the use of genuine periodic boundary

conditions, in which no alteration of governing equations is made, results in growing mean

flow and decaying turbulence in simulations of turbulent boundary layers. The premises

under which the usage is valid are presented and explained. The extended temporal

approach1 is addressed. It is used to assess the validity of the use of genuine periodic

boundary conditions. Extending the work by Lund et al.,2 we propose an inflow gen-

eration method for spatial simulations of compressible turbulent boundary layers. The

method assumes that the compressibility effects reduce to density variation effects and

that general temperature-velocity relationships exist in the boundary layers. It gener-

ates inflow by reintroducing to an inlet the rescaled downstream flow field. Test results

indicate that it is an efficient and accurate method.

Introduction

The simulation of a turbulent boundary layer re-
quires streamwise inflow and outflow boundary condi-
tions. The use of a buffer domain3 or a sponge layer4, 5

in combination with non-reflecting boundary condi-
tions can successfully handle the outflow. The spec-
ification of the inflow boundary conditions, however,
is more problematic and challenging. A turbulence
eddy in a boundary layer has the memory of its up-
stream history. This fact makes it desirable to specify
a realistic time series of turbulence at the simulation
inlet. A method to generate a time series of turbulence
data usually has conflict between efficiency and accu-
racy. To create accurate inflow may require detailed
independent simulations and can be costly. While a
cost-saving but crude inflow generation method needs
a long development section behind the inlet for a flow
to evolve to be realistic. Typical inflow generation
techniques can be organized into three categories, as
shown in Fig. 1.

The first category consists of the fringe method,6 the
rescaling method2, 7 and methods for temporal simu-
lation.1, 8, 9 The inflow in this category comes from
the outflow with or without modification. The fringe
method distinguishes a fringe region, in which finite
extra terms are added to the governing equations to
remove mass and decrease boundary layer thickness,
and a useful region for data collection, in which there
are no extra terms. In the streamwise direction, the
simulation domain is assembled with one useful re-
gion and two fringes at its ends and periodic boundary
conditions are applied. Thus, the flow that goes out
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under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein
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from the downstream end of the data collection region
comes into the upstream end after passing through the
two fringes. The method results in a spatial simulation
and can take into account the streamwise pressure gra-
dient. The rescaling method is based on scaling laws
of turbulent boundary layers. The inflow is generated
by rescaling the velocity field at a downstream station
and reintroducing it at the upstream inlet. It can be
easily implemented to yield a spatial simulation and
works very well with little or no transient near the inlet
boundary, thought there are potential enhancements
that may serve to increase its utility futher. In tempo-
ral simulations, periodic boundary conditions are used,
artificially making the inflow exactly the same as the
outflow. A turbulence eddy going out from the outlet
comes back into the domain at the inlet without any
modifications. To reduce artificial effects, the stream-
wise size of the domain should be large enough at least
to decorrelate turbulence eddies at the inlet and those
in the middle between the inlet and the outlet. A gen-
uine temporal simulation solves the original governing
equations, while improved temporal simulations adds
forcing in the governing equations to account for the
streamwise inhomogeneity of boundary layers.

The second category involves inflow generation by
outside mechanisms, such as an auxiliary simulation
and superposition of random fluctuations on desired
mean profiles. Li et al.10 present a method to gen-
erate the inflow boundary conditions for large eddy
simulations (LES) of turbulent free shear flows. In the
method, a time series of instantaneous velocity planes
from an auxiliary simulation is recycled repeatedly to
provide the inflow. They transform the time signal into
a periodic one using a windowing technique. The pe-
riodicity induced by the inflow takes 25% of their test
domain to die out. Adams11 used a similar approach to
provide the inflow for his direct numerical simulation
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Fig. 1 Schematic showing inflow generation tech-
niques.

(DNS) of a turbulent compression ramp. Large-Eddy
Simulation (LES) of supersonic compression-ramps by
Rizzeta et al.12, 13 and DNS of turbulent flow over a
rectangular trailing edge by Yao et al.14 also use aux-
iliary simulations to generate turbulence inflow. The
specification of the inflow by superposition of random
fluctuations on mean flows is a straightforward proce-
dure. This procedure is successful in the simulations of
spatially decaying compressible isotropic turbulence.15

Other implementations with varying degrees of success
include DNS of the spatial laminar-to-turbulent tran-
sition16 and DNS of a backward-facing step.17 The
shortcoming of the method is the requirement of a
fairly long development section due to the lack of
proper phase information and nonlinear energy trans-
fer. Also, it is very hard to control the skin friction
and integral thickness at the end of the development
section. Klein et al.18 develop a method for generating
pseudo turbulent inflow. It provides some advantages
over the classical approach that uses random fluctu-
ations. The method is based on digital filtering of
random data and is able to reproduce a prescribed
one-point second order statistics as well as autocorre-
lation functions.

The last category has the most straightforward ap-
proach.16, 19 The computation of the spatially devel-
oping turbulent boundary layer starts far upstream,
where a laminar profile plus disturbances is set up to
allow a transition to turbulence. No time-dependent
inflow is required, but the cost is daunting. The ap-
proach is generally used to investigate transition itself,
see Ref. 20–23.

In the current paper, we first discuss and analyze the
use of periodic boundary conditions toward temporal
simulations. We introduce the genuine temporal direct
numerical simulation (TDNS) and an extended tem-
poral direct numerical simulation (ETDNS). We then
present a rescaling method for spatial simulation of
compressible turbulent boundary layers. Test compar-
isons between TDNS and ETDNS are made. Results
from the rescaling method are given and also compared
with those from the marching process of ETDNS.

Periodic boundary conditions

Periodic boundary conditions are widely used in ho-
mogeneous directions in turbulent simulations. The

outlet

wall

boundary layer upper edge

inlet
wall−normal (z)

top domain boundary

free stream

turbulent boundary layer

streamwise (x)

spanwise (y)

Fig. 2 Schematic of the control volume for analysis
in TDNS.

usage is proved to be valid by many numerical exper-
iments, though it may not be well justified physically.
The advantages of periodic boundary conditions are
apparent. No external inputs are required, Fourier
representation is applicable and statistical samples are
improved. However, their homogeneity requirement
usually limits them to simple geometries, such as rect-
angular isotropic turbulence boxes, turbulent plane
channels and turbulent pipes.

A flat-plate boundary layer under zero-pressure
gradient evolves slowly in the streamwise direction
and lacks streamwise homogeneity. If the effect of
the streamwise inhomogeneity is neglected, periodic
boundary conditions may be applied, leading to a tem-
poral behavior of the boundary layer. The majority of
boundary layer transition simulations used temporal
approaches and achieved notable success accompanied
with limitations, see Ref. 24. In turbulent boundary
layer simulations, streamwise periodicity may still be
assumed, as addressed in the following two sections for
DNS.

TDNS

The use of genuine periodic boundary conditions in
DNS of a zero-pressure-gradient turbulent boundary
layer is to apply them in the streamwise direction, be-
sides the span wise direction, without any change to
the governing equations. As a result, the simulation
is temporal instead of spatial and we call it temporal
DNS (TDNS). In TDNS, non-stationary statistics are
obtained, that is the mean streamwise velocity profile
develops in time and the turbulence decays in time.
Also, the wall-normal displacement in the free stream
is prohibited. We can verify these aftereffects from the
mathematical description of the simulated problem.

Taking the simulation domain as a control volume
V and denoting its surface as S, as shown in Fig. 2, we
integrate the continuity equation and have the follow-
ing

∂

∂t

∫

V

ρdV +

∮

S

ρujnjdS = 0, (1)

where nj is the normal vector of the surface S. Start-
ing from the continuity and momentum equations, we
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can deduce the equation for total kinetic energy K
(= 1

2ρuiui) as

∂K

∂t
+

∂ujK

∂xj

=
∂uiσij

∂xj

+ pSkk − Φ, (2)

where σij is the stress tensor and Φ is the dissipation
given by

σij = −pδij + τij

= −pδij + 2µ

(

Sij −
1

3
Skkδij

)

, (3)

Φ = 2µ

(

SijSij −
1

3
S2

kk

)

, (4)

where τij is the shear stress tensor, Sij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

is the strain tensor and µ is the dy-

namic viscosity. Integrating Eq. (2) over V results in

∂

∂t

∫

V

KdV +

∮

S

(ujK − uiσij)njdS

=

∫

V

pSkkdV −
∫

V

ΦdV , (5)

With symmetric boundary conditions at the top
boundary of the domain, no-slip and no-penetration
boundary conditions at the wall and periodic boundary
conditions in the streamwise and spanwise directions,
no wall-normal displacement at the top boundary fol-
lows Eq. (1) to conserve mass in the domain, and
the second term in Eq. (5) thus vanishes. In an in-
compressible case, the pressure dilatation, the third
term in Eq. (5), is zero while the dissipation is always
greater than zero, the total kinetic energy in the do-
main therefore always decrease with time. This is also
apparent from an energy conversion and conservation
point of view.

According to Eq. (5), the free stream outside the
boundary layer supplies energy to the flow within the
boundary layer through convection and work by shear
and pressure. Turbulence is mainly confined within
the boundary layer and is sustained by the mean flow
energy. For an incompressible turbulent boundary
layer with the same boundary conditions as above, the
integral equations resembling Eq. (5) for the mean and
turbulent kinetic energy are respectively

∂

∂t

∫

V

KmdV = −
∫

V

PdV −
∫

V

ΦmdV , (6)

∂

∂t

∫

V

KtdV =

∫

V

PdV −
∫

V

ΦtdV , (7)

where Km = 1
2ρ〈ui〉〈ui〉 is the mean kinetic energy,

Kt = 1
2ρ〈u′

iu
′
i〉 is the turbulent kinetic energy, P is

turbulence production, Φm and Φt are mean and tur-
bulence dissipation respectively. We use 〈·〉 to denote

a spatial average in a homogeneous plane and a prime
the fluctuation with respect to a spatial mean. P , Φm

and Φt are all non-negative within the boundary layer.
So the mean kinetic energy within the boundary layer
decays and the mean streamwise velocity profile de-
velops in time, which results in the thickening of the
boundary layer. The mean flow evolution also leads
to a decrease in the turbulence production and causes
the decay of the turbulence.

The pressure dilatation in Eq. (5) represents a trans-
fer mechanism between internal energy and kinetic
energy other than dissipation. In a compressible case,
similar terms appear in the integral equations corre-
sponding to Eq. (6) and Eq. (7), but they are not
dominant in the energy balances if the turbulent Mach
number is not very high. In a supersonic turbulent
boundary layer, the pressure dilatation in the tur-
bulent kinetic energy balance is negative in the wall
vicinity, resulting in a transfer of kinetic to internal
energy, and assumes small positive values approaching
zero away from the wall. So we can extrapolate the
above analysis and arguments for an incompressible
case to a supersonic case.

In summary, the use of genuine periodic boundary
conditions in DNS of a zero-pressure-gradient tur-
bulent boundary layer results in a temporal DNS
(TDNS). Taylor’s frozen turbulence hypothesis has
been found to be valid if the viscous forces are negligi-
ble, the mean shear is small and the turbulence level
is low, see Ref. 25. It may be used to relate a spa-
tial simulation and a temporal one through a Galilean
transformation with a convective velocity, which can
be defined through spectra or space-time correlation
functions. Lee et al.15 investigated the applicability of
Taylor’s hypothesis in spatially decaying compressible
isotropic turbulence. They found good match between
their spatial and temporal simulations when the tur-
bulence intensity and the fluctuation Mach number
are low. The convection velocity was found to be
equal to the free stream velocity. But when the tur-
bulence Mach number is high, compressibility-driven
quantities in the temporal simulation differ from the
spatial one. Fluctuations in the form of acoustic
waves propagate in all directions with the local sound
speed, which ruins the use of Taylor’s hypothesis in
compressibility-dominated statistics. So the bridges
connecting temporal and spatial simulations through
Taylor’s hypothesis for supersonic and hypersonic tur-
bulent boundary layers are broken due to their high
compressibility, high turbulence intensities, large mean
shear and large viscous effects. Nevertheless, TDNS
with periodic boundary conditions may still be used
to simulate these flows at a particular streamwise lo-
cation. The necessary conditions are that (i) the tur-
bulence can be considered quasi-steady, i.e. it adjusts
itself to local conditions much faster than the mean
profile develops; and (ii) for the purpose of gathering
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Fig. 3 Schematic of the domains for ETDNS.

statistics, the sampling time is shorter than the time
scale of the mean profile development. A flow that sat-
isfies these conditions evolves slowly and can be viewed
as a good approximation of a stationary station of a
boundary layer.

The necessity of the second condition is apparent.
Otherwise, correct statistics are inhibited as the mean
flow changes apparently in a non-self-similar way. The
first condition ensures the second one. It is necessary
to initialize the flow field to nearly equilibrium for re-
alization of these conditions. If the initial flow field is
far away from equilibrium, TDNS may require a long
temporal transient process before it settles down to a
quasi-stationary status. Thus, we could hardly control
the skin friction and the boundary thickness at the end
of the transient. Martin26 address the procedure for
the initialization of compressible turbulence at nearly
equilibrium conditions.

ETDNS

The streamwise periodicity in TDNS leads to a
parallel non-stationary mean flow and decaying tur-
bulence due to the neglect of the non-parallel effects
of streamwise advection and diffusion in a turbu-
lent boundary layer. These effects can be recovered
through the addition of forcing to the basic equations.

Realizing the fact that both the boundary layer
thickness and the energy level of the turbulence vary
slowly as functions of the streamwise location, Spalart
et al.8, 9 introduced a new wall-normal coordinate
and then applied a multiple-scale procedure to ap-
proximate the slow streamwise growth of the boundary
layer. The final product is a set of small forcing terms
that are added to the Navier-Stokes equations. They
used the technique and successfully simulated an in-
compressible turbulent boundary layer at four stream-
wise stations. Guarini et al.27 extended the technique
to compressible turbulent boundary layer simulations.

Maeder et al1 further developed the procedure by
Spalart et al.,8, 9 and proposed an extended temporal
DNS (ETDNS) approach in which no a priori assump-
tions about the mean flow are required. The ETDNS
computes a flow at a series of streamwise stations, as
seen in Fig. 3, allowing the spatial mean flow evolution
to be approximated from its upstream history. When a
sufficiently stationary state is reached at a station, the
computational box can be marched downstream an-
other spatial step. In ETDNS, the forcing is derived
from the spatial evolution history of the mean flow
such that the parabolized Navier-Stokes equations are
recovered, which is solved locally in time by DNS. Both

the mean flow non-parallelism and the interaction of
mean flow non-parallelism with local fluctuations are
accounted for in the forcing. For the mathematical
derivation of the forcing, we refer to Ref. 1.

There are two remarks worth mentioning for the im-
plementation of ETDNS. One is about the geometric
set-up of a simulation and the other regards the forcing
at the first station where no upstream history exists,
see Fig. 3. The streamwise extent of the domain should
be small enough to ensure modest mean flow variation
while long enough for turbulence to be decorrelated as
in TDNS. In contrast to the simulation by Maeder et

al.,1 our simulation presented later relaxes the former
to satisfy the latter. The distance between neighboring
stations also has contradictory requirements. It should
be long enough to avoid overlap of stations but short
enough to achieve the accuracy of the forcing calcula-
tion. At the first few stations, the information about
the mean flow development from previous stations is
either missing or inaccurate, causing a non-physical
spatial transient. We have the same experience as
Maeder et al.1 that, in the spatial transient phase, the
solution can be marched downstream after the tempo-
ral transient has settled down appreciably, even before
a stationary state is reached.

The advantages of ETDNS are (i) ETDNS achieves
stationary flow behaviors, i.e. the mean profile keeps
and the turbulence sustains; (ii) the marching process
allows ETDNS to simulate a series of streamwise sta-
tions of a spatially developing boundary layer; and
(iii) ETDNS requires no a priori assumptions about
the mean flow. But, like TDNS and the approach by
Spalart et al.,8, 9 ETDNS is a temporal technique in
nature and a turbulent eddy does not march from one
station to another.

Rescaling methods

Temporal approaches, such as TDNS and ETDNS,
are efficient and useful in turbulent boundary layer
simulations, but they intrinsically have both physical
and numerical limitations. Many simulations resort to
spatial approaches. For example, to numerically in-
vestigate the shockwave/turbulent-boundary-layer in-
teraction over a compression ramp, an inflow-outflow
spatial simulation can not be evaded. Still, good inflow
generation techniques are desired for this kind of spa-
tial simulations. An auxiliary temporal simulation can
be used as an inflow generation device,2, 10, 11 but there
are issues of computational cost, inflow time periodic-
ity and inflow characteristics control. An efficient and
accurate way to integrate the inflow generation and
the main spatial simulation is highly desirable.

Based on scaling laws of incompressible turbulent
boundary layers, Lund et al.2 proposed a rescaling
method to generate turbulent inflow for simulations of
spatially developing incompressible boundary layers.
The method rescales the velocity field at a downstream
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Fig. 4 Schematic of the rescaling methodology.

station and then recycles the rescaled velocity field
to the inlet, see Fig. 4. A compressible extension
of the method is developed by Urbin et al.7 and is
used to simulate a supersonic boundary layer7 and
shock/boundary-layer interaction.28 The difficulties
in the compressible case are that three extra ther-
modynamic variables, i.e. temperature, density and
pressure, need to be rescaled and the velocity field and
the temperature field are coupled. Urbin et al.7 treat
the temperature in the same way as they rescale the
streamwise velocity. The treatment may work numeri-
cally for a zero-pressure-gradient boundary layer when
the recycling station is close to the inlet. Thus, its ap-
plicability is limited. We follow the idea of Lund et al.2

and extend the method to the compressible case. We
overcome the difficulties by assuming Morkovin’s hy-
pothesis and temperature-velocity relationships. The
assumptions are well justified both theoretically and
experimentally.

Essentially, Morkovin’s hypothesis states that the
turbulent time scale in a boundary layer is independent
of Mach number. Thus, the effects of Mach number
are passive to the dynamics of the turbulent bound-
ary layer, and only affect the variation of the fluid
properties. The validity of Morkovin’s hypothesis is
the reason why van Driest’s mean-flow scaling is suc-
cessful. Following Morkovin’s scaling, we rescale the
velocity field taking into account the density variation
across the boundary layer by using the ratio of local
density to wall density ( ρ̄

ρ̄w
, with an overbar denoting

averaging in time and w indicating a wall quantity).
In a zero-pressure-gradient boundary layer, the mean
pressure is constant and the state equation for perfect
gas indicates the mean density variation is equivalent
to the mean temperature variation, so the temperature
and the velocity are coupled in the rescaling procedure.
We therefore need a relation between the mean tem-
perature and the mean velocity for the velocity scaling.
Walz’s equation (also called modified Crocco relation)
is a good approximation for the velocity-temperature
relation within a boundary layer under zero pressure
gradient, see Ref. 29. To rescale the temperature
fluctuations, we also need relationships between the
temperature fluctuations and the velocity fluctuations,

including amplitude and phase relations. In this re-
gard, we can use the Strong Reynolds Analogy (SRA).

The simulations by Guarini et al.27 and Maeder et

al.1 do not support the SRA at Mach numbers as low
as 2.5 and 3. In our rescaling method, we only assume
that there is some kind of relationship between the
temperature and the velocity for the simulated bound-
ary layer, and we do not assume any particular forms
of the relationship. Thus, we do not use Walz’s equa-
tion and the rigorous SRA, as we see below. In this
sense, the method presented here is more general.

Due to the presence of multiple length scales in a
turbulent boundary layer, we must treat the rescal-
ing process in a piecemeal fashion. To rescale the
mean streamwise velocity, we follow Ref. 29 and dis-
tinguish the viscous sublayer, the logarithmic region
and the law-of-the-wake region in the boundary layer.
To rescale the mean wall-normal velocity and turbu-
lence, we divide the boundary layer into the inner layer
and outer layer. Hereafter, we denote the streamwise,
spanwise and wall-normal coordinates as x,y,z respec-
tively, with the corresponding velocity components as
u(= U + u′), v(= V + v′) and w(= W + w′), where a
capital letter represents a mean and a lowercase letter
with prime represents a fluctuation. We denote the
recycled downstream station as (·)r and the inlet (·)i.

Mean rescaling

For a flat-plate boundary layer, the mean spanwise
velocity V is zero due to the spanwise statistical sym-
metry, and the mean pressure P is equal to the free
stream value. Thus, the remaining mean variables to
be rescaled are the mean streamwise velocity U , the
mean wall-normal velocity W , the mean temperature
T and the mean density ρ̄.

Mean streamwise velocity

In the viscous sublayer, the viscous shear stress is
much larger than the Reynolds shear stress and is as-
sumed equal to the skin friction. Taking the effect of
the temperature-dependence of the viscosity, we have

Us

uτ

= z+, (8)

where uτ =
√

(

ν ∂U
∂z

)

w
is the friction velocity, z+ =

uτ z
νw

is the wall-normal coordinate in viscous length
unit, and Us is the transformed mean streamwise ve-
locity in the sublayer defined by

Us =

U
∫

0

(

T

Tw

)n

dU, (9)

in which T is the mean temperature and the variation
of the viscosity with temperature is given by a power
law

µ

µw

=

(

T

Tw

)n

. (10)
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When (z+)r = (z+)i, i.e.

(z)r =
(uτ )i

(uτ )r

(νw)r

(νw)i

(z)i =
ωuτ

ων

(z)i, (11)

in which

ωuτ
=

(uτ )i

(uτ )r

, ωνw
=

(νw)i

(νw)r

, (12)

we can compute the transformed velocity U s at the
inlet from

(Us)i = ωuτ
(Us)r. (13)

In the logarithmic region (also called inertial sub-
layer), the distance z is assumed to be the only relevant
length scale. It can be taken as the mixing length in
Prandtl’s mixing length theory after multiplying a con-
stant k. A logarithmic law is obtained by using either
Prandtl’s mixing length theory or just a scale analy-
sis. The effect of density variation is embodied in the
velocity scale. The logarithmic law reads

U∗∗

uτ

=
1

k
ln z+ + C, (14)

where C is a constant, U∗∗ is the van Driest trans-
formed velocity which is defined by

U∗∗ =

U
∫

0

√

Tw

T
dU. (15)

In our scaling method for inflow generation, the above
form of the law in the logarithmic region is not needed.
We only need to use the following self-similar expres-
sion.

U∗∗

uτ

= flog(z
+), (16)

where flog is assumed to be a universal function, see
Ref. 30. So when (z+)r = (z+)i, we have

(U∗∗)i = ωuτ
(U∗∗)r. (17)

In the outer layer of a compressible boundary layer,
the different similarity law

U∗∗
e − U∗∗

uτ

= fwake(η), η =
z

∆
, (18)

applies, where fwake is assumed to be independent of
streamwise location x, Ue is the free stream velocity
and ∆ is an integral reference length taken to be the
momentum thickness θ in our rescaling. As the expres-
sion indicates, the law is named as the velocity-defect
law or the law-of-the-wake. It is well supported by a
large number of experiments in zero-pressure-gradient

boundary layers. From scaling scheme (18), we can
obtain

(U∗)i = ωuτ
(U∗)r,

U∗ = U∗∗
e − U∗∗ =

Ue
∫

U

√

Tw

T
dU, (19)

when (η)r = (η)i, i.e. (z)r = (z)i

ω∆
, where ω∆ = (∆)i

(∆)r
.

Mean wall-normal velocity

From the mean continuity equation, we can approx-
imate W as

W = −1

ρ̄

∫ z

0

∂ρ̄U

∂x
dz. (20)

We estimate the order of ∂ρ̄U
∂x

to be ρ̄
x

√

ρ̄w

ρ̄
uτ . The

order of W then is z
x

√

ρ̄w

ρ̄
uτ . So we take

√

ρ̄w

ρ̄
uτ to

be the scale for W . In the inner and the outer layers
of the boundary layer, W is assumed to be scaled as

W

uτ

√

ρ̄

ρ̄w

= finner(z
+), (21)

W

uτ

√

ρ̄

ρ̄w

= fouter(η), (22)

where functions finner and fouter are assumed to be
independent of streamwise location x. The scaling of
W above is not justified physically. However, W is very
small relative to U and is not a dynamically dominant
quantity. Thus, a rigorous treatment of W can be
relaxed.

Applied at the recycling station and the inlet, the
scaling of W leads to

(W )i = ωuτ
ωρw

(ρ̄)r

(ρ̄)i

(W )r, (23)

for (z+)r = (z+)i in the inner layer and (η)r = (η)i in
the outer layer. ωρw

is given by

ωρw
=

(ρ̄w)i

(ρ̄w)r

. (24)

Mean temperature

When fluctuations are small, to a first-order ap-
proximation, the mean temperature T and the mean
density ρ̄ are related by the state equation T = P

Rρ̄
for

perfect gas, where R is the gas constant. Thus, the
rescaling of ρ̄ follows once that of the mean tempera-
ture T is known.

The mean temperature appears in transformed
mean streamwise velocities U s, U∗∗ and U∗. We need
a relationship to decouple the mean streamwise ve-
locity and the mean temperature and to produce the
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rescaling of T in the process of rescaling U . For a zero-
pressure-gradient boundary layer, Walz’s equation is
such a relation and is given by

T

Te

=
Tw

Te

+
Tr − Tw

Te

(

U

Ue

)

− r
γ − 1

2
M2

e

(

U

Ue

)2

, (25)

where Tr is the recovery temperature, subscript e in-
dicates a free stream quantity, Me is the free stream
Mach number, γ is the ratio of specific heats, and r it
the recovery factor. The recovery temperature Tr and
the recovery factor r are related by the definition of
the recovery factor as

Tr = Te

(

1 + r
γ − 1

2
M2

e

)

. (26)

For an adiabatic wall, Tw = Tr and Tr is calculated
by Eq. (26). For an isothermal wall, Tw is given and
Tr is still calculated by Eq. (26). So Walz’s equation
tells us that the relation between the mean tempera-
ture and the mean streamwise velocity is dependent
of the streamwise location only through Tr, or say
the recovery factor r. If the streamwise distance from
the recycling station to the inlet is not very large, it
is a good assumption that r is the same at the re-
cycling station and the inlet. So Walz’s equation is
also exactly the same at the two stations. We may
generalize the argument by assuming that the rela-
tionship between the mean temperature and the mean
streamwise velocity is independent of the streamwise
location as long as the streamwise extent is not very
large. For a boundary layer under non-zero pressure
gradient, the relationship may not take the same form
as Walz’s equation, but its form is not needed as far as
the rescaling method is concerned. We can obtain the
relationship numerically at the recycling station and
then use interpolation to decouple the mean stream-
wise velocity and the mean temperature at the inlet.
To compute U s and U∗∗, from which we obtain U and
T , we start the integration from the wall, where the
conditions are known. To compute U and T from U ∗,
we start the integration from the free stream, where
the conditions also are known.

Turbulence rescaling

The scaling suggested by Morkovin to account for
the mean-density variation appears appropriate to at
least Mach 5. When the velocity fluctuations are nor-

malized by the velocity scale
√

ρ̄w

ρ̄
uτ , they are in fair

agreement with the incompressible data. Applied at
the recycling station and the inlet, the scaling of u′

i

(i = 1, 2, 3 corresponding to u′,v′,w′) by
√

ρ̄w

ρ̄
uτ leads

to

(u′
i)i = ωuτ

ωρw

(ρ̄)r

(ρ̄)i

(u′
i)r, (27)

for (z+)r = (z+)i in the inner layer and (η)r = (η)i

in the outer layer. The difficulty is how to rescale the
temperature, density and pressure fluctuations.

To a first-order approximation, the state equation
yields

p′

P
=

T ′

T
+

ρ′

ρ̄
. (28)

In most cases, p′

P
is very small and can be assumed to

be negligible, which gives

ρ′

ρ̄
= −T ′

T
. (29)

Thus, only the temperature fluctuations need to be
rescaled. The Strong Reynolds Analogy (SRA) serves
to predict the relation between the temperature fluc-
tuations and the streamwise velocity fluctuations and
is given by

Trms

T
= (γ − 1)M2

e

urms

U
,

Ru′T ′ =
u′T ′

urmsTrms
= −1, (30)

where Trms and urms are respectively the root mean
squared temperature and velocity fluctuations. From
the SRA, we can predict T ′ as

T ′ = −(γ − 1)M2
e

u′

U
T. (31)

The problem is that the SRA is not well supported
by simulation data even at low Mach numbers, see
Refs. 1,27. We can avoid the problem in the same way
as we deal with the relationship between the mean
temperature and the mean streamwise velocity. We
assume the following relations which are more general
than the SRA,

Trms

T
= famp

urms

U
,

T ′(t)

Trms
= c

u′(t + fphase)

urms
, (32)

where t denotes time, c is equal to +1 (or −1) where u′

and T ′ are positively (or negatively) correlated, famp

and fphase are functions of z+ in the inner layer and
η in the outer layer, and they are not functions of the
streamwise location. Applying Eq. (32) to the recy-
cling station and the inlet, we can deduce

(T ′(t))i =
(u′(t + fphase))i

(u′(t + fphase))r

(U)r

(U)i

(T )i

(T )r

(T ′(t))r

= ωuτ
ωρw

(ρ̄)r

(ρ̄)i

(U)r

(U)i

(T )i

(T )r

(T ′(t))r. (33)

Approaching the wall, (U)r

(U)i
becomes a 0

0 type limit and

can be evaluated according to L’Hospital rule. We
thus have the following rescaling of the temperature
fluctuations at the wall.

(T ′
w(t))i =

ωρw
ωνw

ωuτ

(ρ̄)r

(ρ̄)i

(Tw)i

(Tw)r

(T ′
w(t))r . (34)
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Fig. 5 The weight functions used in the simulation.

Rescaling parameters

To compute rescaling parameters ω′s, we need uτ ,
νw, ∆ (in our case, θ) and ρw at both the recycling
station and the inlet. At the recycling station, these
quantities are known. At the inlet, (νw)i and (ρw)i

can be found directly from the mean wall temperature
(Tw)i, θ can be specified and uτ is given as a function of
θ using Karman-Schoenherr equation under van Driest
II transformation, see Ref. 31.

Implementation

In the rescaling of the mean streamwise velocity,
three sublayers are distinguished. In the rescaling of
other quantities, the boundary layer is divided into the
inner sublayer and the outer sublayer. The composite
profile of a quantity over the entire boundary layer is
formed by a weighted combination of the profiles for
all sublayers. For example, the streamwise velocity is
formed as

u = {Uviscb1(z) + Ulogb2(z) + Uwakeb3(z)} +

{u′
inner[1 − b3(z)] + u′

outerb3(z)}, (35)

where Uvisc, Ulog and Uwake represent the mean pro-
files in the viscous sublayer, the logarithmic region and
the wake region respectively, u′

inner and u′
outer in turn

represent the fluctuation profiles in the inner layer and
the outer layer, and b1(z), b2(z) and b3(z) are weight
functions. The weight functions are constructed from
hyper-tangent functions as

b1(k) =
1

2

{

1 − tanh

[

c1
k − km1

klogs − kvisc

]}

, (36)

b2(k) =
1

2

{

tanh

[

c1
k − km1

klogs − kvisc

]

−

tanh

[

c23
k − km23

kwake − kloge

]}

, (37)

b3(k) =
1

2

{

1 + tanh

[

c23
k − km23

kwake − kloge

]}

,(38)

where k is the wall-normal grid index and equivalent
to coordinate z, c1 and c23 are constants to adjust the
steepness of the weight functions, kvisc, klogs, kloge and
kwake are the wall-normal indices to distinguish differ-
ent sublayers, km1 =

kvisc+klogs

2 and km23 =
kloge+kwake

2 .

In the simulation presented in the next section, we
choose kvisc, klogs, kloge and kwake to correspond to
z+ = 5, z+ = 30, z

δ
= 0.2 and z

δ
= 0.5 respectively.

Fig. 5 shows the weight functions we used in the sim-
ulation.

In the mean scaling, a time average is needed to
exclude the starting transient if the flow is initialized
with a crude guess. In that case, the following formula
is used.

U (m+1) = w1U
(m) + w2〈u(m+1)〉y, (39)

where U (m+1) and U (m) are the time-averaged mean
at time step m+1 and m respectively, 〈u(m+1)〉y is the
average of u in the spanwise direction at time step m+
1, w1 and w2 are two weights satisfying w1 > 0, w2 >
0, w1 � w2 and w1 + w2 = 1. Lund et al.2 let w1 be
1 − ∆t

τ
and w2 be ∆t

τ
, where ∆t is the computational

time step and τ the characteristic time scale of the
averaging interval. From formula (39), we know

U (m+1) = wm+1
1 U (0) +

w2(w
m
1 〈u(1)〉y + wm−1

1 〈u(2)〉y + · · · + 〈u(m+1)〉y). (40)

At the beginning of the simulation, because m is small
and w1 � w2, U (0) takes a very large fraction of
U (m+1), as seen from Eq. (40). Thus, we provide a
smooth mean profile from TDNS as U (0) instead of
using 〈u(0)〉y. We choose w1 so that when the mean
information has propagated from the inlet to the recy-
cling station, m is large enough for U (0) to take almost
no effect in U (m+1). After the transient, we increase
w1 to run for N steps in order to stabilize the statis-
tics and then switch to a usual running average, i.e.
w1 = 1 − 1

N+m−m0
and w2 = 1

N+m−m0
, where m0 is

the step at which the running average begins. If U (0)

is very crude and w1 is not well attuned, the tempo-
ral starting transient can be very long before the right
spatial behavior builds up over the boundary layer. If
w1 is too small, a good mean profile U (m+1) can not
be achieved due to insufficiency of effective samples
for averaging, which leads to wrong scaling and thus
wrong boundary layer mean behavior.

If the initial flow field is crude, the rescaling parame-
ters uτ and θ that are specified at the inlet can largely
differ from those calculated at the recycling station
initially. The mean streamwise velocity rescaled by
the law-of-the-wall thus has a large shift from the one
rescaled by the-law-of-the-wake. When the mean pro-
file of the streamwise velocity is formed by the weight
functions, there appears an undershoot or overshoot in
the profile. We call the start of a simulation with the
undershoot or overshoot a jump start. It takes a long
time to smooth the undershoot or overshoot and build
up the right mean behavior over the whole boundary
layer. A trick to avoid this is to let the initial uτ and θ
at the recycling station be the same as those specified
at the inlet, and then use the averaging formula (39) to
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initial flow conditions Me Te[K] ρe[kg/m3] 103δ0[m] 103δ∗0 [m] 104θ0[m]
4 5000 0.5 6.96 2.87 3.94

Reθ0
uτ0[m/s] 103Cf0

11363 243 0.96
numerical set-up Lx Ly Lz Nx Ny Nz

6.10δ0 1.52δ0 10.30δ0 384 128 128
∆x+ ∆y+ ∆z+ dstation

12.7 9.5 0.11-535 2Lx

Table 1 Parameters for TDNS and ETDNS. Reθ0 =
ρeUeθ0

µe
. dstation is the distance between two neighboring

stations in ETDNS. Other symbols take their usual meaning.

bring their right values at the recycling station slowly
in the temporal transient of the simulation. In this
way, the simulation starts smoothly. After the initial
transient, the averaging formula (39) is discarded and
uτ and θ at the recycling station are calculated directly
from the mean profile.

Tests

In this section, we simulate a supersonic turbulent
boundary layer under zero pressure gradient. The per-
fect gas assumption is used and the specific heats, cp

and cv, are assumed constants. The dynamic viscosity
µ is assumed to obey a power law. We first present the
comparisons between TDNS and ETDNS. We check
the conditions for the validity of TDNS and point out
the improvement over TDNS by ETDNS. We then
present the results of a spatial DNS (SDNS) in which
the rescaling method is implemented. The numerical
results are compared with theoretical ones and those
from the marching process of ETDNS. Scaling laws are
verified by both SDNS and ETDNS.

We run ETDNS until a stationary station is reached
and then take the final flow field as the initial condi-
tions to run TDNS and ETDNS. Therefore, the initial
flow parameters and numerical set-up are exactly the
same for TDNS and ETDNS. These are given in Ta-
ble 1. To save run time, a coarse spanwise mesh is
used for comparisons below. The initial flow field for
SDNS is from a quasi-stationary TDNS with a fine
spanwise mesh. The initial flow parameters and nu-
merical set-up of SDNS is given in Table 2. To compare
results between SDNS and marching ETDNS, we also
run ETDNS using the same initial flow field as SDNS.
Thus, the marching ETDNS also has the fine mesh in
the spanwise direction. We emphasize that all results
in comparsions between TDNS and ETDNS are ob-
tained with the coarse spanwise mesh and all results
from the rescaling method are obtained with the fine
spanwise mesh. For the resolution and domain assess-
ments, we refer to Ref. 26.

The codes of TDNS, ETDNS and SDNS are essen-
tially the same and are described in details in Ref.26.
They use third-order shock-capturing weighted essen-
tially non-oscillatory (WENO)schemes for the inviscid

fluxes, fourth-order central-finite-difference schemes
for viscous fluxes and a second-order accurate data-
parallel lower-upper (DPLU) relaxation method for
the time advancement. The ETDNS code has the ex-
tra forcing terms, which are treated explicitly. The
marching scheme in ETDNS to approximate deriva-
tives on the slow streamwise scale is a second-order
backward finite difference scheme. No-slip and no-
penetration conditions for velocity and an adiabatic
condition for temperature are used at the lower wall.
Symmetric boundary conditions are used at the top
domain boundary. In SDNS, we generate the inflow
using the rescaling method. The location of the recy-
cling station is given in Table 2. We treat the outflow
by placing a sponge layer4, 5 before the outflow bound-
ary and applying symmetric boundary conditions at
the outflow boundary. In the sponge layer, a vector
quantity ~Z = −σ(x)(~U − ~U0) is added to the right-

hand side of the governing equations, where ~U stands
for the vector of conservative variables and ~U0 a given
steady basic flow. Because the recycling station is close
to the sponge layer, we let ~U0 be the mean flow at the
recycling station to reduce the artificial effects from
the outflow treatment on the recycling station. Fol-
lowing Israeli et al ,32 the Newtonian cooling function
σ(x) is chosen to be

σ(x) = A(N + 1)(N + 2)
(x − xs)

N (Lx − x)

(Lx − xs)N+2
, (41)

where A and N are two adjustable parameters chosen
to be 4 and 3 respectively, xs is the streamwise location
where the sponge layer starts given in Table 2, and Lx

is the streamwise length of the computational domain.

Comparisons between TDNS and ETDNS

Mean behavior

Fig. 6 shows the time history of friction velocity (av-
eraged at the wall) and integral thickness in TDNS and
ETDNS. In TDNS, the evolution of the skin friction is
slow and its trend is not obvious in Fig. 6, but we may
expect its decrease as the simulation goes much longer.
The boundary layer thickening with time in TDNS
indicates that the use of genuine periodic boundary
conditions does lead to the temporal behavior of the

9 of 17

American Institute of Aeronautics and Astronautics Paper 03–3963



initial flow conditions Me Te[K] ρe[kg/m3] 103δ0[m] 103δ∗0 [m] 104θ0[m]
4 5000 0.5 7.44 3.28 4.11

Reθ0
uτ0[m/s] 103Cf0

11742 255 1.01
numerical set-up Lx Ly Lz Nx Ny Nz

5.71δ0 1.43δ0 9.64δ0 384 256 128
∆x+ ∆y+ ∆z+ xr xs

12.7 4.8 0.12-565 4.6δ0 5.0δ0

Table 2 Parameters for SDNS. xr is the streamwise location of the recycling station. xs is the streamwise
location where the sponge layer starts.

0 1 2220
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260
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tuτ0/δ0
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104θ

tuτ0/δ0

103δs
104θ

Fig. 6 The temporal evolution of the friction ve-
locity and the integral thickness for TDNS and
ETDNS. solid line: ETDNS, dashed line: TDNS.

mean flow. In ETDNS, as expected, this temporal evo-
lution is prohibited by the forcing, and the skin friction
and the integral thickness evolve little with time.

If we estimate the time scale of the boundary layer
growth as

tg =

(

1

δ∗
dδ∗

dt

)−1

, (42)

it is about 25
(

δ∗

0

uτ0

)

in TDNS for the duration shown

in Fig. 6, where δ∗0 and uτ0 are defined in the caption
of Table 1. The total sampling time for the purpose of

gathering statistics in TDNS is about 3
(

δ∗

0

uτ0

)

, which

is about one order of magnitude lower than the growth
time. The boundary layer in TDNS can be considered
quasi-steady if the flow adjusts to its local conditions
much faster than the boundary layer growth. The ad-
justing time is of the order of the large-eddy-turn-over
time δ0

Ue
and much smaller than the growth time. Thus,

100 101 102 103-0.03

-0.02

-0.01

0

0.01

0.02

0.03

z+

Fig. 7 The mean streamwise momentum balance
in ETDNS. solid line: ∂〈ρu〉

∂t
, dashed line: 〈fu〉, dash-

dot line: − ∂〈ρuw〉
∂z

, dashdotdot line: ∂〈τxz〉
∂z

.

the conditions for the validity of TDNS are satisfied in
the present simulation. Further comparisons between
TDNS and ETDNS also validate the use of TDNS.

In ETDNS, the mean streamwise momentum bal-
ance is

∂〈ρu〉
∂t

= −∂〈ρuw〉
∂z

+
∂〈τxz〉

∂z
+ 〈fu〉, (43)

where the terms at the right hand side represent ad-
vection, diffusion and forcing. Fig. 7 shows these terms
normalized with the free stream momentum ρeUe and
the large-eddy turn-over time δ

Ue
. From Fig. 7 we see

that the time derivative of the mean streamwise mo-
mentum remains small in the boundary layer, with a
maximum magnitude of less than 0.5%. Fig. 7 also
shows that the advection and diffusion are dominant
in the viscous sublayer and they nearly balance each
other. Outside the viscous sublayer, the diffusion is
very small, in turn the forcing and advection terms
balance each other.

The profiles of the mean streamwise velocity and the
mean temperature are compared in Fig. 8(a). A mean
quantity here is obtained by averaging in both space
and time. The difference between TDNS and ETDNS
is small for each of these quantities. Fig. 8(b) plots
the mean temperature versus the mean streamwise ve-
locity and compare the resulting profiles with the one
by Walz’s equation. It can be seen that Walz’s equa-
tion predicts very well the relationship between the
mean streamwise velocity and the mean temperature
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Fig. 8 The mean streamwise velocity and the mean temperature: (a) comparison between TDNS and
ETDNS; (b) comparison with Walz’s equation with r = 0.9. solid line: ETDNS, dashed line: TDNS,
dashdot line: Walz’s equation.

0 0.5 1-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

z/δ

_______
ρu’u’/(ρeUeUe)

_______
ρv’v’/(ρeUeUe)

_________
ρw’w’/(ρeUeUe)

________
ρu’w’/(ρeUeUe)

(a)

0 250 500 750 1000-2

0

2

4

6

8

10

12

z+

_______
ρu’u’/(ρwuτuτ)

_______
ρv’v’/(ρwuτuτ)

_________
ρw’w’/(ρwuτuτ)

________
ρu’w’/(ρwuτuτ)

(b)

0 0.5 1-0.016

-0.012

-0.008

-0.004

0

0.004

z/δ

________
ρu’T’/(ρeUeTe)

________
ρwT’/(ρeUeTe)

(c)

0 250 500 750 1000-0.36

-0.3

-0.24

-0.18

-0.12

-0.06

0

0.06

z+

________
ρu’T’/(ρwuτTw)

_________
ρw’T’/(ρwuτTw)

(d)

Fig. 9 Comparison between TDNS and ETDNS for (a) & (b) Reynolds stresses, (c) & (d) Reynolds heat
fluxes. Quantities in (a) and (c) are nondimensionalized by the free stream parameters. Quantities in (b)
and (d) are nondimensionalized by the wall parameters. solid line: ETDNS, dashed line: TDNS.

for the conditions chosen, and it can be used in the
rescaling method for zero-pressure-gradient supersonic
turbulent boundary layers.

Turbulence statistics

The Reynolds stresses and the Reynolds heat fluxes
are compared between TDNS and ETDNS, as shown
in Fig. 9. Primes are used to denote fluctuations
with respect to the Reynolds-averaged mean. Due
to the statistical symmetry in the spanwise direction,
the Reynolds shear stresses ρu′v′ and ρv′w′ and the
Reynolds heat flux ρv′T ′ converge to zero, and they are
not shown in Fig. 9. To observe the different tempo-
ral behavior of these quantities, we nondimensionalize
them by the free stream parameters, i.e. ρe, Ue and

Te. As seen in Fig. 9, the magnitude of each Reynolds
stress component in TDNS is less than the correspond-
ing in ETDNS systematically. The reason for the
systematical difference is that, in ETDNS, the flow can
be statistically stationary , while in TDNS, the turbu-
lence decays with time. Scaled with wall parameters,
i.e. ρw, uτ and Tτ (Tτ = Tw for an adiabatic wall and
Tτ := Prwqw

ρwCpwuτ
for an isothermal wall, where Prw is

the Prandtl number and qw the heat diffusion flux at
the wall), we can still observe the similar difference for
these quantities, which may indicate that the turbu-
lence in TDNS evolves in a non-self-similar way. The
same phenomena are also found for root mean squared
fluctuating velocities, temperature and total temper-
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Fig. 10 (a) Amplitude and (b) phase relationship between temperature fluctuations and streamwise
velocity fluctuations. solid line: ETDNS, dashed line: TDNS.
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Fig. 11 The comparison of the TKE budget be-
tween TDNS and ETDNS. solid line: ETDNS,
dashed line: TDNS.

ature. Nevertheless, the difference in the current and
later comparisons between TDNS and ETDNS is very
small, which means the use of TDNS is valid.

The SRA predicts the relation between the temper-
ature fluctuations and the streamwise velocity fluc-
tuations as in Eq. (30). From the SRA, we know

TrmsU
(γ−1)M2

e Turms
= 1 and −Ru′T ′ = 1. Fig. 10 plots

TrmsU
(γ−1)M2

e Turms
and −Ru′T ′ versus z

δ
and indicates that

the SRA is not satisfied in the bulk of the boundary
layer simulated by both TDNS and ETDNS. In the
rescaling method, we do not use the SRA.

After assuming homogeneity of turbulence in the
streamwise and spanwise directions, the turbulent ki-
netic energy (TKE) budget equation reads

∂

∂t
(〈ρ〉k̃) + w̃

∂

∂z
(〈ρ〉k̃) =

P + T + Πt + Πd + D − Φ + Vc, (44)

where a quantity with a tilde is a Favre-averaged mean.
The terms in Eq. (44) follow the usual interpretations.
Fig. 11 gives the comparison of the TKE budget nondi-
mensionalized by wall parameters between TDNS and
ETDNS. Again, the small systematical difference ex-
ists and the reason for the difference is the same as in
Fig. 9.

SDNS

The rescaling method results in a spatial bound-
ary layer. Fig. 12 shows the spatial evolution of the

boundary layer displacement thickness δ∗, momentum
thickness θ, friction velocity uτ and friction coefficient
Cf . The rescaling method builds up the spatial bound-
ary layer from the initial periodic flow field after the
temporal transient is passed. The solid circles repre-
sent the time-averaged spatial distributions of these
quantities for the spatial boundary layer in equilib-
rium. As seen from Fig. 12, the specified inlet friction
velocity is as about 8% larger than the mean friction
velocity of the initial flow field while the momentum
thickness is the same, which makes the described trick
necessary to avoid a jump start.

Sivells & Payne formula31 under van Driest II trans-
formation reads

FcCf =
0.088[lg(FxRex) − 2.3686]

[lg(FxRex) − 1.5]3
, (45)

FθReθ =
0.044FxRex

[lg(FxRex) − 1.5]2
, (46)

where Cf is the local skin friction coefficient, Rex (=
ρeUex

µe
) is Reynolds number based on distance to the

virtual origin of the boundary layer, Reθ is Reynolds
number based on the momentum thickness as defined
in Table 1. For a given Reθ, we compute Cf from the
estimation by Karman-Schoenherr equation under van
Driest II transformation.31 After Cf is calculated, we
then compute Rex from Eq. (45). Karman-Schoenherr
equation under van Driest II transformation reads

1

FcCf

= 17.08[lg(FθReθ)]
2 +

25.11 lg(FθReθ) + 6.012. (47)

Fc, Fθ and Fx are van Driest II transformation func-
tions computed as

Fc =
0.2rM2

e

(sin−1 α + sin−1 β)2
, (48)

Fθ =
µe

µw

, (49)

Fx =
Fθ

Fc

, (50)
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Fig. 12 Distributions of the displacement thickness δ∗, momentum thickness θ, friction velocity uτ and
friction coefficient Cf along the streamwise (x) direction. solid circles: SDNS, dashed lines: initial periodic
flow field, solid lines: formulas from Least Square (LS) minimization.
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Fig. 13 Distribution of Reθ along the streamwise
(x) direction. solid circles: SDNS, dashdotted line:
estimation by Eq. (45) and Eq. (47), solid line: for-
mula from Least Square (LS) minimization.

where r is recovery factor and α and β are calculated
by

α =
2A2 − B√
4A2 + B2

, (51)

β =
B√

4A2 + B2
, (52)

with

A =

√

0.2rM2
e

F
, (53)

B =
1 + 0.2rM2

e − F

F
, (54)

F =
Tw

Te

. (55)

Fig. 13 shows that the streamwise evolution of Reθ

from the simulation is in excellent agreement with the

11500 12000 12500 13000

0.0008

0.0012

0.0016

Cf

Reθ

Fig. 14 Distribution of the local skin friction Cf in
terms of Reθ. Solid circles: SDNS, dashdotted line:
Eq. (47), solid line: formula from LS minimization.

one estimated by Eq. (45) and Eq. (47). Knowing uτ ,
we calculate Rex at the inlet from Eq. (45) and ob-
tain data correspondence in SDNS between Reθ and
Rex. We then use Least Square (LS) minimization to
produce a formula similar to Eq. (46). The solid line
in Fig. 13 represents the plot from the LS minimiza-
tion. Its slope matches very well the slope estimated
by Eq. (46). For comparison, we have shifted the vir-
tual origin of the boundary layer to the boundary layer
inlet. The relative magnitude difference between the
LS results and the predictions by Eq. (46) is less than
2%. In Fig. 12, the LS results for θ distribution are
given by a solid line.

Fig. 14 compares the simulated local skin friction
Cf in terms of Reθ with the estimation by Eq. (47).
The dashdotted line is plotted from the estimation,
solid circles denote time-averaged values from the spa-
tial simulation. The solid line represents the results
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Fig. 15 The mean streamwise velocity and the mean temperature: (a) distributions, (b) comparison
with Walz’s equation with r = 0.9. dotted lines: station (1), dashed lines: station (2), solid lines: station
(3), dashdot line: Walz’s equation.

of the LS minimization which uses SDNS data to pro-
duce a formula similar to Eq. (47). As indicated by
the comparison, the result from the simulation is in
good agreement with the estimation. The relative
magnitude difference between the LS results and the
predictions by Eq. (47) is about 3.3%.

Fig. 15 (a) shows the mean streamwise velocity
and the mean temperature, scaled by the free stream
parameters, at three different streamwise stations
marked as (1), (2) and (3) in Fig. 4 which respectively
correspond to x1 = 0.3δ0, x2 = 2.4δ0 and x3 = 4.5δ0.
Because the evolution of the mean flow is very small
due to the small streamwise extent, little difference
is observed. Fig. 15 (b) plots the relationship be-
tween the mean streamwise velocity and the mean
temperature at these stations. It can be seen that the
relationship is independent of streamwise locations,
which verifies the assumption we made in the rescal-
ing method. For this zero-pressure-gradient boundary
layer, Walz’s equation can describe the relationship
very well.

Fig. 16 (a) shows the mean streamwise velocity pro-
files under the transformation given by Eq. (9) at the
three stations. The transformed velocity is scaled by
uτ , and the wall-normal coordinate is nondimension-
alized by the wall units. Fig. 16 (a) indicates that the
profiles are collapsed very well by the transformation
and scaling in the viscous region (z+ < 5), and they
satisfy the theoretical linear relationship in the vis-
cous region very well. Fig. 16 (b) shows the van Driest
transformed mean streamwise velocity profiles scaled
with uτ at the three stations. Results from TDNS and
ETDNS are also included. The wall-normal coordinate
is also nondimensionalized by the wall units. Fig. 16
(b) indicates that the profiles are collapsed very well by
the transformation and scaling in the logarithmic re-
gion (30 < z+ < 200 in our case), and they satisfy the
theoretical logarithmic law in the logarithmic region
very well. Near the boundary edge, the mean stream-
wise velocity profiles from SDNS, TDNS and ETDNS
are not collapsed by the above manners, but as seen in
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Fig. 16 Mean streamwise velocity (a) transfor-
mation by Eq. (9), (b) transformation by Eq. (15)
and (c) transformation by Eq. (19). dotted lines:
station (1), dashed lines: station (2), solid lines:
station (3), x-mark: TDNS station, open circles:
the fourth station of ETDNS.
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Fig. 17 The comparisons among stations (1), (2) and (3) for (a) & (b) Reynolds stresses, (c) & (d)
Reynolds heat fluxes. Quantities in (a) and (c) are nondimensionalized by the free stream parameters.
Quantities in (b) and (d) are nondimensionalized by the wall parameters. dotted lines: station (1), dashed
lines: station (2), solid lines: station (3).

Fig. 16 (c), they are collapsed by the transformation
given by Eq. (19) with the wall coordinate scaled by
the momentum thickness. The transformation given
by Eq. (19) is actually the van Direst transformation
on the mean streamwise velocity defect.

Fig. 17 shows the profiles of Reynolds stresses and
Reynolds heat fluxes at the three stations. They are
obtained by averaging scaled Reynolds stresses and
Reynolds heat fluxes in time. The wiggles on the pro-
files are due to the insufficiency of averaging samples.
In Fig. 17 (a) and (c), the free stream parameters are
used in scaling, and in Fig. 17 (b) and (d), the wall
parameters are used. We may expect the spatial evolu-
tion of a Reynolds stress or a Reynolds heat flux from
Station (1) to Station (3) is small because the three
stations are close. While in Fig. 17 (a) and (c), the
difference among the three stations is quite apparent.
It may originate from the insufficiency of averaging
samples. When scaled by wall parameters, the differ-
ence becomes much smaller, as indicated by Fig. 17
(b) and (d).

Fig. 18 plots TrmsU
(γ−1)M2

e Turms
and −Ru′T ′ versus z

δ
at

the three stations. As seen from Fig. 18, it is a good as-
sumption that the relationships between temperature
fluctuations and streamwise velocity fluctuations are
independent of the streamwise location, as expressed
in Eq. (32), the rigorous SRA is not satisfied in the
bulk of the boundary layer though.
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Fig. 18 Plots of the (a) amplitude and (b) phase
relationships between the temperature fluctuations
and the streamwise velocity fluctuations. dotted
lines: station (1), dashed lines: station (2), solid
lines: station (3).
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Conclusions

Temporal simulations can be used to investigate
a particular statistically stationary station of a tur-
bulent boundary layer. The use of genuine periodic
boundary conditions in a temporal simulation neglects
the streamwise inhomogeneity of the boundary layer
and thus results in evolving mean flow and decaying
turbulence, but the usage is valid provided that the
turbulence is quasi-steady and sustains for sufficient
time to gather statistics without apparent boundary
layer growth. The extended temporal approach adds
forcing to the governing equations to account for the
streamwise inhomogeneity and can achieve a statisti-
cally stationary mean flow and turbulence. The forcing
is constructed from available information of flow evo-
lution and no a priori assumptions about the flow are
needed. The marching process in the extended ap-
proach allows simulations of a series of boundary layer
stations.

The rescaling method proposed in this paper is de-
signed for spatial simulation of a compressible tur-
bulent boundary layer. The main assumptions be-
hind the method are that the compressibility effects
reduce to density variation effects and that general
temperature-velocity relationships exist in the bound-
ary layer. Based on similarity laws, the method
rescales the flow field at a recycling station and then
reintroduces the rescaled flow field to the inlet. The
presented test indicates that the method results in a
spatial simulation which generates its own inflow with
little transient adjustment behind the inlet. The test
is carried out over a zero-pressure-gradient flat plate,
but the method may be extended to cases with pres-
sure gradient and/or geometric change because the
method does not assume any specific forms of simi-
larity laws and temperature-velocity relationships. As
pointed out by Lund et al2 in their modified Spalart
method, when the inlet is under a pressure distribution
in equilibrium, the required changes in their method
as well as ours involve only the computation of the
friction velocity at the inlet and the vertical velocity
distribution at the upper boundary.
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