Introduction

The boundary layers that form on hypersonic cruise vehicles are turbulent and chemi-
cally reacting. The chemical reactions alter the temperature distribution on the boundary
layer, modifying the heating rates. To aid the design of these vehicles, an accurate predic-
tion of the chemical composition of the gas is needed.

k — e turbulence models are widely used to simulate hypersonic flows. These models
predict high speed perfect gas flows accurately. However, there are some model uncer-
tainties when simulating chemically reacting flows. With the very high energies present
in these flows, the temperature fluctuations will be very large. The reaction rate depends
exponentially on temperature, and temperature fluctuations result in large increases in
the reaction rates. Also, the chemical source term can either damp or amplify turbulent
fluctuations; this effect has been seen experimentally by several researchers. Johnson et
al.- have also shown that hypersonic boundary layers tend to be stabilized by endothermic
reactions and destabilized by exothermic reactions.

It is illustrative to consider the k — ¢ and direct numerical simulation (DNS) results
for a non-reacting turbulent boundary layer at Mach 4 and Rey = 800. Figure 1 plots
the mean temperature given by the k£ — ¢ model of Jones and Launder. In this case, the
temperature is high enough to induce chemical reactions. Figure 2 plots the magnitude
of the temperature fluctuations for the same case obtained from the DNS of Martin et
al.- We observe that the maximum temperature fluctuations are nearly 15% of the mean
temperature. Therefore, to obtain accurate reaction rates, the temperature fluctuations
must be modeled.

A general method for the closure of a non-linear chemical source term in the RANS
approach is to use a probability density function (PDF)- in which the unclosed species
production term is represented by a PDF in terms of the independent variables. The PDF
can be computed using a modeled balance equation for the same or using a Monte-Carlo
method.> These tend to be computationally expensive for practical problems. An alterna-
tive approach is to assume a generic shape and compute only the parameters that define the
PDEF. This reduces the computational cost considerably. Following this latter approach,
Gaffney et al. assume a shape for the temperature fluctuation PDF and investigate how
the fluctuations affect the combustion process. They need two parameters to obtain the
PDF, the mean and the standard deviation. The mean is obtained from the solution of
the Favre-averaged Navier-Stokes equations and the standard deviation is calculated by
solving an extra transport equation for the energy variance. Martin and Candler- used a
similar approach to model the temperature fluctuations in reacting, isotropic turbulence.
In particular, a shape of the PDF is assumed based on DNS data and the parameters that
describe the PDF are computed using calibrated mean turbulence values.
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In the Gaffney et al. model, a transport equation is derived for the energy variance
and then the unclosed higher moments in the equation are modeled in terms of the average
quantities. This model and similar ones’ have been applied to flow problems where the
predictions of the average flow quantities are compared with their experimental values.
This assesses the overall performance of the model but does not evaluate the assumptions
made for each unclosed term. In this regard, a DNS database is very useful wherein the
unclosed terms can be computed exactly and compared to their modeled counterpart. This
is the approach that will be taken in this work to evaluate the model. Similarly, the Martin
and Candler model will also be assessed.

In the next section, these turbulence-chemistry models are delineated along with a
brief description of the k — ¢ approach. This is followed by the comparison of these
models to the DNS of homogeneous isotropic turbulence. The conclusions are presented
at the end.

Numerical Method

In case of homogeneous isotropic turbulence, the gradients of the mean flow quantities
are zero. Thus there is no mean convection or diffusion. As a result, the mean density,p,
the mean velocity components, %; and the mean total energy, £, remain constant in the
flow. In these simulations,

p=0.5 kg/m?
u; =0 for i=1,2,3
E = pe,T + Lpuiti; + pk+ Y pshl. (1)

The over-bar represents Reynolds averaging whereas the tilde represents the Favre-averaged
quantities. ¢, is the average specific heat of the mixture at constant volume, T is the
average temperature, ps and h? are the density and heat of formation of species s in the
mixture, and k is the turbulent kinetic energy given by

— 1 ",

pk = 5pu;u;

Here we study the reversible bimolecular dissociation of Ny in a two species mixture.

No+M+=2N+M. (2)
The conservation of N is given by
opr
— 3
o 1 (3)
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where w; represents the rate of production or consumption of Ny due to the reversible
dissociation reaction and is given by

2
P1 P1 P2 P2 P1 p2
— Mk [ PEY (P L P2 ok (P2 (P P2 4
b 1k (Ml) <M1+M2)+ 1kb<M2> (M1+M2> (4)

where M; and M, are the molecular masses of Ny and N, respectively. k; and kj are
the forward and backward rate constants and are given by

kp=CT"e™%T

ko = kg/Keq ®)

where C', n and 6 are experimentally determined constants, and K., is the known
temperature-dependent equilibrium constant. Thus the reaction rate, w;, depends on the
species concentrations and the temperature via the rate constants. In hypersonic flows,
the reactions are mostly temperature limited and therefore the effect of the fluctuations
in the species concentrations is neglected while computing the mean reaction rate, w;.
However, the effect of the temperature fluctuations is accounted for using a Probability
Distribution Function, P(T).

_ _ _ _ 2 _ _
_ ([P, P — (P2 1 P
= Mk [ PEY (P P2 ok (P2 (P P2
w1 1kf<M1) <M1+M2)+ 1 b<M2> <M1+M2> (6)

ky = /Ooo ks (T)P(T)dT

where

ky = /0 b ky(T)P(T)dT.

DNS of these flows have found the Probability Distribution Function to be Gaussian,

P(T) = S S L;TV : (8)
V2 T 21" T"

where T"T" is the temperature variance and is evaluated using turbulence-chemistry mod-
els discussed later in this section.

The exact governing equation for k£ in homogeneous turbulence is given by

ok _
Por =

where t;; is the viscous stress tensor and p’ is the pressure fluctuation. €5 and €. are the

—tiju ; + plug ; = —pes — pec + p'uy; 9)

solenoidal and compressible part of dissipation, respectively, and are given by

= N ", .
pPEs = Vpw, w;

—~ =4 1
Pec = V3Pl it ;
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The compressible dissipation and the pressure dilatation terms are modeled in terms of
the solenoidal dissipation.
pec = pes (a1 M)

e r (10)
P, = pes(os M)
where a; =1, az = 0.2 and M; is the turbulent Mach number given by
2k
M = ==
YyRT
The exact governing equation for €5 in homogeneous turbulence is given by
0, — _ 0 — ow! Ow;
a(upwé’w;’) =—vu ga—J(pw "wl’) 3pr,l,, Juy —20%p 8% o5,
el € (11)
2R + 29 fkm
_\/—/ p
P, 5

The first two terms on the right hand side represent diffusion of €5 due to turbulent
mixing and the third term is the turbulent dissipation of €5. The last two terms represent
production of solenoidal dissipation due to turbulence and due to baroclinic torques. The
turbulent diffusion terms are modeled using the gradient diffusion assumption. They are
expected to be negligible in a homogeneous turbulent flow because of the absence of mean
gradients. As pointed out by Mansour et al., the turbulent production term and the
dissipation term are together modeled as

- 8(,0” aw// 562
20 pw!w ” ” —20%p ~ —Cy— 12
Terp 8:53 ij >k (12)
Gaffney et al. model
The temperature variance, T""T" , is obtained from the energy variance, e”¢”. Here,

e is the internal energy of the Imxture, e = ¢, T + Y csh?. In homogeneous turbulence,
the transport equation for the energy variance has the following form,




where g = e”€”, 7;; is the viscous stress tensor and ¢; is the heat flux vector defined in

terms of the conductivity, x, and the gradient of temperature. hy; and cy are the specific
enthalpy and mass fraction, respectively, of species s and D is the diffusivity. The various
unclosed terms are modeled and the resulting modeled equation in case of homogeneous
turbulence is

€
The temperature variance, T , is obtained as
. Y
TN — eés , (15)

v

where
1 (T
Co = — o (T) dT .
¢ T/OC()

More details can be found in the original reference.

Martin and Candler model

Martin and Candler study the interaction between decaying isotropic turbulence and
finite-rate chemical reactions at conditions typical of a hypersonic boundary layer. Their
results confirmed that the interaction is characterized by the increased or decreased magni-
tude of the temperature fluctuations for exothermic or endothermic reactions, respectively.
They use the DNS database to develop a model for the temperature fluctuations, using
a probability density representation. The DNS database revealed a physically consistent
relationship between the resolved-scale flow conditions, that may be used to predict the
standard deviation of the Gaussian PDF for the temperature fluctuations. Specifically, for
isotropic turbulence with Ny + M = 2N + M reactions (M is the collision partner),

VI (4 @) s a0

T CM} if endothermic.

where Ah° is the non-dimensionalized heat release, A is the Taylor microscale and lg is
the expansion length defined as the distance traveled by the acoustic radiation from the
chemistry induced temperature fluctuations. M; and Da are the turbulent Mach number
and the Damkohler number, respectively, and A, B and C are calibrated constants. The
mean temperature is, once again, obtained from the average energy conservation equation.
Further details of the model can be found in Ref. 12. The model has been calibrated and
tested by comparison to simulations of decaying isotropic turbulence. The single-variable
PDF model was found to capture the fluctuations in temperature and product formation.
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Results

As a test case, we solve a homogeneous isotropic turbulence flow field with Reynolds
number based on the Taylor micro-scale, Re) , of 35 and an initial turbulent Mach number
of 0.7 . The initial concentration of N2 is 0.3 . The non-reacting flow is simulated
until ¢/7 = 2 to obtain fully developed turbulence. Here 7, = A/u’ is the characteristic
turbulent time-scale. The reactions are then started and time is reset to 0. All the data
presented in this section is based on this reference time.

First, we check the accuracy of the k — e turbulence model. To do that we compare
the various terms in the transport equation for k, Eq. (9), and evaluate their modeling.
Figure 3 presents the budget of the k-equation. We see that the solenoidal dissipation
is the most dominant term whereas the compressible dissipation is small throughout the
simulation. The pressure dilatation term is also small except for the initial peak due to
the exothermic reaction. It is to be noted that the heat released in the chemical reactions
increases the turbulence level in the flow via this pressure-dilatation term. The compress-
ible dissipation is modeled in terms of the solenoidal dissipation times ale with a1 = 1.
Figure 4 compares the ratio of the two dissipations to the magnitude of M?. It can be
seen that the present simulation gives oy = 0.25 instead of 1.0 as obtained by Sarkar.-
The amount of compressibility in a Direct Numerical Simulation of homogeneous isotropic
turbulence depends on the initialization of the flow field and thus can vary in different
simulations. The pressure dilatation term is modeled in terms of €5 as shown in equation
(10). Once again, we check the accuracy of this modeling in figure 5 by comparing the
ratio M/ pes to agM?. Tt is seen that the model captures the magnitude of the term,
except for the initial peak. Also, there are oscillations in the pressure-dilatation term that
are not reproduced by the model.

Next, we study the e-equation. Figure 6 presents the five terms as identified in
Eq. (11). We see that the dissipation term, ®, and the turbulent production term, P, are
dominant in this flow and the turbulent diffusion terms, D.; and D.s, are comparatively
small. Also the baroclinic torques have very little contribution to the overall budget.
Comparison of P, — ®, with its modeled counterpart —cype?/k in fig. 7 shows that the
modeling is reasonable only after the initial transience (t/7 > 1).

In the region after the initial transience the compressible dissipation and pressure-
dilatation term in the k-equation are less than 5% of the solenoidal dissipation. Also,
these terms have opposite effects on rate of change of k£, namely,

—pec —i—p’u;"i ~ —ps(ar — a3)Mt2

with a; = 0.25 and as = 0.2. Therefore, neglecting these terms has a negligible effect
on the rate decay of the turbulent kinetic energy. However, dropping the dependence on

6



T in M, decouples the k — € equations from the mean flow equations and can be solved
independently. This helps in differentiating the deficiencies of the k£ — e model from those
of the turbulence-chemistry models. Thus the equations to be solved are

" _,
des /k
ot 2%

with initial conditions kg and ¢y at time ¢y. The solution to this initial value problem is

k= kg <1+i)
To

of the form

(18)

where n=1/(ca—1) and 79 = nko/ep. We use co = 1.8 corresponding to Chien’s model.
Figure 8 and 9 compares the decay of £ and e as predicted by the model to that in the
DNS. It can be seen that starting at tg/7 = 1, the turbulence model does a reasonably
good job in predicting the decay.

Next, we study the chemistry modeling in terms of the species density of Ny, p;.
The variation of p; is given by the Eq. (3) where the average source term is a non-linear
function of the mean flow variables and the turbulence parameters.

8P1

= = (T, p1, B, k, €, T"T")

Here, p is constant and T can be obtained from the conservation of total mean energy,
Eq. (1). The turbulent parameters, k& and e are already known from solving their decoupled
governing equations. Finally, the temperature variance, T , 1s evaluated using the
turbulence chemistry models. We first study the Gaffney et al. model followed by the
model by Martin and Candler.

As pointed out in the earlier section, in the Gaffney et al. model, T"T" is obtained
from the energy variance, e”e”, using Eq. (15). If the specific heat of the mixture is
independent of temperature, as is the case in these simulations, then Eq. (15) simplifies to

e/l ell

~2
Co

T/'—'\f'” —

(19)

This equation is arrived at by making certain assumptions which become clear when we
look at all the contributions to e”e’”. In this flow case, we have a mixture of Ny, with
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zero heat of formation, and N, with a heat of formation h9. Thus the internal energy of
the mixture can be written as

e=c,T + coh = (c1€p1 + C20y2)T + cah

where ¢; and cy are the mass fractions of Ny and N, respectively, and c,; and c,2 are
the corresponding specific heat at constant volume. Using the above form, we derive an
expression for the energy variance as follows,

elle!! = c2T”T” + ,82 ’l’c’l’ + ,3%6'2,6’2’ + 2cy,810’1’T” + 2cy,320 T" + 251,820’1’0’2’ (20)

where (1 = cmT and [y = CUZT + hg. The third and fourth order correlations are
neglected in arriving at the above equation. Thus we see that Eq. (19) is true only if the
last five terms in the above equation are negligible. We compare the magnitudes of the
various contributions to e”e” as obtained from DNS in Fig. 10. We see that the T
term has the biggest contribution to the energy variance but the effects of the c’z’ cy and

the c§T" terms are not negligible. The remaining three terms are relatively small.

Next, we study the various terms in the transport equation for e'lel! , Eq. (13). The
magnitude of the source terms on the right-hand side as obtained from DNS are shown
in Fig. 11. The first term, S1, represents the dissipation of turbulent energy into the
internal energy and is a source term for e’e” . The second term accounts for the decay of
internal energy fluctuations due to heat conduction. It acts as a sink of the energy variance
and has a dominating effect in the transport of e’e”. The third term is the correlation
of the energy fluctuation with the pressure work. From the DNS data, we see that this
term is large and oscillating. The transport equation for e’ in homogeneous isotropic
turbulence is modeled as Eq. (14) where the modeled term corresponds to the dissipative
effect of S2. Comparing the magnitude of S2, in Fig. 12, to its modeled counterpart
—2Cype/k as obtained from DNS shows that they are quite different. The term 0pg/0t is
also shown in the figure. It can be seen that Eq. (14) does not hold in this flow and better
modeling of the transport equation is required.

Next, we use the Martin et al. model, Eq. (16), to evaluate T"T". The constants
A, B and C' are obtained by calibrating the DNS data, as shown in Fig. 13. The Taylor
micro-scale in this homogeneous isotropic turbulence is given by

k
A=14/10v —

€
Thus using the turbulence-chemistry models to evaluate /T , we get a first order system
for p; and it is solved using fourth order Runge Kutta method with initial value of p;
matched at t/7 = 1.



Figure 14 shows the variation of the rms temperature normalized by T as obtained
by DNS and the turbulence-chemistry models. Initially, the temperature fluctuations are
as high as 10% of the mean and they decay as the reaction slows down. It can be seen
that Martin and Candler model reproduces the temperature variance after ¢/7, = 1 very
well. The initial high values of the temperature fluctuations could not be reproduced
because of the limitations of the k£ — e turbulence model. On the other hand, the Gaffney
et al. model overpredicts the temperature fluctuations mainly because of neglecting the
various contributions to e’e” in Eq. (20). Next, we look at the forward rate constant,
ks, in Fig. 15. It is to be noted that the forward reaction is exothermic direction. It
can be seen from the DNS data, that as the reaction proceeds and the temperature of the
mixture rises due to dissociation of Ny, the rate of the forward reaction also increases. The
Gaussian PDF with 7" T" , as obtained from Martin and Candler model, is used to evaluate
the integrated value of the forward rate constant and it matches well with Ef obtained
from DNS. On the other hand, kf evaluated at the mean temperature, T , 1s smaller than
]_ff. The average forward rate constant evaluated using the temperature variance from
the Gaffney et al. model is higher than k; from DNS and than that predicted by the
Martin and Candler model. Finally, the average reaction rate, w;, and the variation of
species density of Ny are presented in Fig. 16 and 17, respectively. There is little difference
between the predictions of the two models.

Conclusions

In this paper, we use Direct Numerical Simulation of homogeneous isotropic turbulence
to evaluate the accuracy of turbulence-chemistry models. We use the standard k—e model
to simulate the turbulence field. The k — ¢ model is found to work well in this flow
field except for the initial transient regime of the flow. The turbulence-chemistry model
of Gaffney et al. solves a modeled transport equation for the internal energy variance.
Comparison with the DNS shows that the modeling of the terms in the transport equation
are inadequate in reproducing the observed trends. Also, correlations including species
concentration fluctuations are neglected while obtaining the temperature variance from
the internal energy variance. This leads to additional errors as a result of which the
Gaffney et al.model overpredicts the temperature fluctuations in the flow. Finally, the
Martin and Candler model is found to predict the temperature fluctuations as well as the
average reaction rate constants accurately.
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FIGURE 1. Average temperature across a turbulent boundary layer at M = 4 obtained
using k — e turbulence model.
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F1GURE 2. Non-dimensional temperature fluctuation magnitude for a turbulent boundary
layer at M = 4 obtained using DNS.
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FI1GURE 3. k-equation budget in a homogeneous isotropic turbulence flow field at Rey =
35 and initial M; = 0.7 .
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F1GURE 4. Modeling of compressible dissipation in a homogeneous isotropic turbulence
flow field at Rey = 35 and initial M; = 0.7 .
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FIGURE 5. Modeling of the pressure-dilatation correlation in a homogeneous isotropic
turbulence flow field at Re) = 35 and initial M; = 0.7 .
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FIGURE 6. e-equation budget in a homogeneous isotropic turbulence flow field at Rey = 35
and initial M; = 0.7 .
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FiGURE 7. Modeling of e-equation in a homogeneous isotropic turbulence flow field at
Rey = 35 and initial M; = 0.7 .
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F1GURE 8. Decay of turbulent kinetic energy in a homogeneous isotropic turbulence flow
field at Rey = 35 and initial M; = 0.7 .
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FIGURE 9. Decay of solenoidal dissipation in a homogeneous isotropic turbulence flow field
at Re) = 35 and initial M; = 0.7 .
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FIGURE 10. Contributions to e”e” in a homogeneous isotropic turbulence flow field at
Re) = 35 and initial M; = 0.7 .
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FiGure 11. Budget of e'el equation in a homogeneous isotropic turbulence flow field at
Rey = 35 and initial M; = 0.7 .
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F1GURE 12. Modeling of e'lel! equation in a homogeneous isotropic turbulence flow field
at Rey = 35 and initial M; = 0.7 .
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Ficure 13. Calibration curve for Martin Model in a homogeneous isotropic turbulence
flow field at Rey = 35 and initial M; = 0.7 .
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FI1GURE 14.Variation of rms Temperature fluctuation in a homogeneous isotropic turbu-
lence flow field at Rey = 35 and initial M; = 0.7 .
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FI1GURE 15.Variation of forward rate constant in a homogeneous isotropic turbulence flow
field at Rey = 35 and initial M; = 0.7 .
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F1GURE 16.Rate of reaction in a homogeneous isotropic turbulence flow field at Rey = 35
and initial M; = 0.7 .
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FIGURE 17.Variation of Ny density in a homogeneous isotropic turbulence flow field at

Re) = 35 and initial M; = 0.7 .
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